The gas-phase ion chemistry of protonated 5-hydroxymethyl-2-furaldehyde (5-HMF), the main product of hexose sugar dehydration reaction, was investigated by means of mass spectrometric and theoretical calculations. Calculations at the B3LYP-D3/6-311þþG** and the G3 (MP2, CCSD(T)) levels of theory indicated the carbonyl oxygen as the 5-HMF preferred protonation site. The Cooks’ “extended” kinetic method was used to measure the unknown proton affinity (PA) and gas-phase basicity (GB) of 5-HMF. The experimentally measured values, PA=207.3 kcal/mol and GB=200.0 kcal/mol, were found to be in good agreement with those calculated by means of G3 (MP2, CCSD(T)) composite methods. Among the seven different 5-HMF optimized protomers, the theoretically predicted potential energy surface of [5-HMF]H+ ions indicated that the carbonyl oxygen protonated most stable species, as well as each one of the four ring-protonated less stable isomers, were trapped in deep potential wells and, at least in principle, could be formed from the gas phase acid-catalyzed hexose sugar decomposition.
Gas-phase structures and thermochemical properties of protonated 5-hmf isomers / Garzoli, Stefania; Antonini, Lorenzo; Troiani, Anna; Salvitti, Chiara; Giacomello, Pierluigi; Patsilinakos, Alexandros; Ragno, Rino; Pepi, Federico. - In: INTERNATIONAL JOURNAL OF MASS SPECTROMETRY. - ISSN 1387-3806. - 447:(2020). [10.1016/j.ijms.2019.116237]
Gas-phase structures and thermochemical properties of protonated 5-hmf isomers
Stefania Garzoli;Lorenzo Antonini;Anna Troiani
;Chiara Salvitti;Pierluigi Giacomello;Alexandros Patsilinakos;Rino Ragno;Federico Pepi
2020
Abstract
The gas-phase ion chemistry of protonated 5-hydroxymethyl-2-furaldehyde (5-HMF), the main product of hexose sugar dehydration reaction, was investigated by means of mass spectrometric and theoretical calculations. Calculations at the B3LYP-D3/6-311þþG** and the G3 (MP2, CCSD(T)) levels of theory indicated the carbonyl oxygen as the 5-HMF preferred protonation site. The Cooks’ “extended” kinetic method was used to measure the unknown proton affinity (PA) and gas-phase basicity (GB) of 5-HMF. The experimentally measured values, PA=207.3 kcal/mol and GB=200.0 kcal/mol, were found to be in good agreement with those calculated by means of G3 (MP2, CCSD(T)) composite methods. Among the seven different 5-HMF optimized protomers, the theoretically predicted potential energy surface of [5-HMF]H+ ions indicated that the carbonyl oxygen protonated most stable species, as well as each one of the four ring-protonated less stable isomers, were trapped in deep potential wells and, at least in principle, could be formed from the gas phase acid-catalyzed hexose sugar decomposition.File | Dimensione | Formato | |
---|---|---|---|
Garzoli_Gas-phase_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
987 kB
Formato
Adobe PDF
|
987 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.