We consider an equivariant approach imposing data-driven bounds for the variances to avoid singular and spurious solutions in maximum likelihood estimation of clusterwise linear regression models. We investigate its use in the choice of the number of components and we propose a computational shortcut, which significantly reduces the computational time needed to tune the bounds on the data. In the simulation study and the two real-data applications, we show that the proposed methods guarantee a reliable assessment of the number of components compared to standard unconstrained methods, together with accurate model parameters estimation and cluster recovery.

Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models / Di Mari, Roberto; Rocci, Roberto; Gattone Stefano, Antonio. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - (2019), pp. 1-30. [10.1007/s10260-019-00480-y]

Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models

Rocci Roberto;
2019

Abstract

We consider an equivariant approach imposing data-driven bounds for the variances to avoid singular and spurious solutions in maximum likelihood estimation of clusterwise linear regression models. We investigate its use in the choice of the number of components and we propose a computational shortcut, which significantly reduces the computational time needed to tune the bounds on the data. In the simulation study and the two real-data applications, we show that the proposed methods guarantee a reliable assessment of the number of components compared to standard unconstrained methods, together with accurate model parameters estimation and cluster recovery.
2019
Clusterwise linear regression; Computationally efficient approach; Data-driven constraints; Equivariant estimators; Mixtures of linear regression models; Model selection
01 Pubblicazione su rivista::01a Articolo in rivista
Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models / Di Mari, Roberto; Rocci, Roberto; Gattone Stefano, Antonio. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - (2019), pp. 1-30. [10.1007/s10260-019-00480-y]
File allegati a questo prodotto
File Dimensione Formato  
DiMari_Scale-constrained-approaches_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 546.01 kB
Formato Adobe PDF
546.01 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1351560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact