Several approaches exist to avoid singular and spurious solutions in maximum likelihood (ML) estimation of clusterwise linear regression models. We propose to solve the degeneracy problem by using a penalized approach: this is done by adding a penalty term to the log-likelihood function which increasingly penalizes smaller values of the scale parameters and the tuning of the penalty term is done based on the data. Another traditional solution to degeneracy consists in imposing constraints on the variances of the regression error terms (constrained approach). We will compare the penalized approach to the constrained approach in a broad simulation study and an empirical application, providing practical guidelines on which approach to use under different circumstances.

PENALIZED VS CONSTRAINED MAXIMUM LIKELIHOOD APPROACHES FOR CLUSTERWISE LINEAR REGRESSION MODELING / Di Mari, Roberto; Antonio Gattone, Stefano; Rocci, Roberto. - (2019), pp. 166-169. (Intervento presentato al convegno ClaDAG 2019 tenutosi a Cassino, Italia).

PENALIZED VS CONSTRAINED MAXIMUM LIKELIHOOD APPROACHES FOR CLUSTERWISE LINEAR REGRESSION MODELING

Roberto Rocci
2019

Abstract

Several approaches exist to avoid singular and spurious solutions in maximum likelihood (ML) estimation of clusterwise linear regression models. We propose to solve the degeneracy problem by using a penalized approach: this is done by adding a penalty term to the log-likelihood function which increasingly penalizes smaller values of the scale parameters and the tuning of the penalty term is done based on the data. Another traditional solution to degeneracy consists in imposing constraints on the variances of the regression error terms (constrained approach). We will compare the penalized approach to the constrained approach in a broad simulation study and an empirical application, providing practical guidelines on which approach to use under different circumstances.
2019
ClaDAG 2019
clusterwise linear regression; penalized likelihood; scale constraints.
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
PENALIZED VS CONSTRAINED MAXIMUM LIKELIHOOD APPROACHES FOR CLUSTERWISE LINEAR REGRESSION MODELING / Di Mari, Roberto; Antonio Gattone, Stefano; Rocci, Roberto. - (2019), pp. 166-169. (Intervento presentato al convegno ClaDAG 2019 tenutosi a Cassino, Italia).
File allegati a questo prodotto
File Dimensione Formato  
DiMari_Penalized-vs-constrained_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1351544
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact