In this paper, we introduce an inertial projection-type method with different updating strategies for solving quasi-variational inequalities with strongly monotone and Lipschitz continuous operators in real Hilbert spaces. Under standard assumptions, we establish different strong convergence results for the proposed algorithm. Primary numerical experiments demonstrate the potential applicability of our scheme compared with some related methods in the literature.

Inertial Projection-Type Methods for Solving Quasi-Variational Inequalities in Real Hilbert Spaces / Shehu, Y.; Gibali, A.; Sagratella, S.. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - 184:3(2020), pp. 877-894. [10.1007/s10957-019-01616-6]

Inertial Projection-Type Methods for Solving Quasi-Variational Inequalities in Real Hilbert Spaces

Sagratella S.
2020

Abstract

In this paper, we introduce an inertial projection-type method with different updating strategies for solving quasi-variational inequalities with strongly monotone and Lipschitz continuous operators in real Hilbert spaces. Under standard assumptions, we establish different strong convergence results for the proposed algorithm. Primary numerical experiments demonstrate the potential applicability of our scheme compared with some related methods in the literature.
2020
Hilbert spaces; Inertial extrapolation step; Quasi-variational inequalities; Strong monotonicity
01 Pubblicazione su rivista::01a Articolo in rivista
Inertial Projection-Type Methods for Solving Quasi-Variational Inequalities in Real Hilbert Spaces / Shehu, Y.; Gibali, A.; Sagratella, S.. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - 184:3(2020), pp. 877-894. [10.1007/s10957-019-01616-6]
File allegati a questo prodotto
File Dimensione Formato  
Shehu_Inertial-Projection-Type_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 338.57 kB
Formato Adobe PDF
338.57 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1349986
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 36
social impact