We study the metrics of constant Q-curvature in the Euclidean space with a prescribed singularity at the origin, namely solutions to the equation −Deltaw = e^(nw) − c δ_0 on R^n, under a finite volume condition. We analyze the asymptotic behavior at infinity and the existence of solutions for every n ≥ 3 also in a supercritical regime. Finally, we state some open problems.

Local and nonlocal singular Liouville equations in Euclidean spaces / Hyder, Ali; Mancini, Gabriele; Martinazzi, Luca. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2021:15(2021), pp. 11393-11425. [10.1093/imrn/rnz149]

Local and nonlocal singular Liouville equations in Euclidean spaces

Mancini, Gabriele;Martinazzi, Luca
2021

Abstract

We study the metrics of constant Q-curvature in the Euclidean space with a prescribed singularity at the origin, namely solutions to the equation −Deltaw = e^(nw) − c δ_0 on R^n, under a finite volume condition. We analyze the asymptotic behavior at infinity and the existence of solutions for every n ≥ 3 also in a supercritical regime. Finally, we state some open problems.
File allegati a questo prodotto
File Dimensione Formato  
Hyder_Local- and-nonlocal_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 338.81 kB
Formato Adobe PDF
338.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Hyder_preptrint_Local- and-nonlocal_2021.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 483.36 kB
Formato Adobe PDF
483.36 kB Adobe PDF Visualizza/Apri PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/1349716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 10
social impact