An assembly of hemispherical particles continuously nucleating on a planar electrode and growing under mixed kinetic-diffusion control is here considered. A model is derived, from the exact boundary integral formulation of the diffusion equation, to predict the overall current evolution, and the radii distribution of particles nucleating within any prescribed time interval. Iso-nucleation-time classes are introduced in the model, grouping particles (almost) simultaneously nucleating over the underlying substrate. The dynamics of particles belonging to a given iso-nucleation-time class are assumed to be identical. By this approximation, hereby referred to as Averaged Class Approximation (ACA), the computation of the average radius of any iso-nucleation-time class is reduced to the solution of an integro-differential equation, parameterized by the nucleation time. An effective computational method is also presented to solve the model equations, giving predictions that fairly well agree with the results of direct multi-particle numerical simulations.

Nucleation and growth of metal nanoparticles on a planar electrode: a new model based on iso-nucleation-time classes of particles / Altimari, P.; Greco, F.; Pagnanelli, F.. - In: ELECTROCHIMICA ACTA. - ISSN 0013-4686. - 296:(2019), pp. 82-93. [10.1016/j.electacta.2018.10.198]

Nucleation and growth of metal nanoparticles on a planar electrode: a new model based on iso-nucleation-time classes of particles

Altimari P.
;
Pagnanelli F.
2019

Abstract

An assembly of hemispherical particles continuously nucleating on a planar electrode and growing under mixed kinetic-diffusion control is here considered. A model is derived, from the exact boundary integral formulation of the diffusion equation, to predict the overall current evolution, and the radii distribution of particles nucleating within any prescribed time interval. Iso-nucleation-time classes are introduced in the model, grouping particles (almost) simultaneously nucleating over the underlying substrate. The dynamics of particles belonging to a given iso-nucleation-time class are assumed to be identical. By this approximation, hereby referred to as Averaged Class Approximation (ACA), the computation of the average radius of any iso-nucleation-time class is reduced to the solution of an integro-differential equation, parameterized by the nucleation time. An effective computational method is also presented to solve the model equations, giving predictions that fairly well agree with the results of direct multi-particle numerical simulations.
2019
diffusion controlled growth; electrodeposition; metal nanoparticles; mixed kinetic-diffusion control; nucleation; three-dimensional growth
01 Pubblicazione su rivista::01a Articolo in rivista
Nucleation and growth of metal nanoparticles on a planar electrode: a new model based on iso-nucleation-time classes of particles / Altimari, P.; Greco, F.; Pagnanelli, F.. - In: ELECTROCHIMICA ACTA. - ISSN 0013-4686. - 296:(2019), pp. 82-93. [10.1016/j.electacta.2018.10.198]
File allegati a questo prodotto
File Dimensione Formato  
Altimari_post-print_Nucleation_2019.pdf

Open Access dal 03/11/2020

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 746.56 kB
Formato Adobe PDF
746.56 kB Adobe PDF
Altimari_Nucleation_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 538.73 kB
Formato Adobe PDF
538.73 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1349589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact