Since decades, genetic algorithms have been used as an effective heuristic to solve optimization problems. However, in order to be applied, genetic algorithms may require a string-based genetic encoding of information, which severely limited their applicability when dealing with online accounts. Remarkably, a behavioral modeling technique inspired by biological DNA has been recently proposed – and successfully applied – for monitoring and detecting spambots in Online Social Networks. In this so-called digital DNA representation, the behavioral lifetime of an account is encoded as a sequence of characters, namely a digital DNA sequence. In a previous work, the authors proposed to create synthetic digital DNA sequences that resemble the characteristics of the digital DNA sequences of real accounts. The combination of (i) the capability to model the accounts’ behaviors as digital DNA sequences, (ii) the possibility to create synthetic digital DNA sequences, and (iii) the evolutionary simulations allowed by genetic algorithms, open up the unprecedented opportunity to study – and even anticipate – the evolutionary patterns of modern social spambots. In this paper, we experiment with a novel ad-hoc genetic algorithm that allows to obtain behaviorally evolved spambots. By varying the different parameters of the genetic algorithm, we are able to evaluate the capability of the evolved spambots to escape a state-of-art behavior-based detection technique. Notably, despite such detection technique achieved excellent performances in the recent past, a number of our spambot evolutions manage to escape detection. Our analysis, if carried out at large-scale, would allow to proactively identify possible spambot evolutions capable of evading current detection techniques.
On the capability of evolved spambots to evade detection via genetic engineering / Cresci, Stefano; Petrocchi, Marinella; Spognardi, Angelo; Tognazzi, Stefano. - In: ONLINE SOCIAL NETWORKS AND MEDIA. - ISSN 2468-6964. - 9:(2019), pp. 1-16. [10.1016/j.osnem.2018.10.005]
On the capability of evolved spambots to evade detection via genetic engineering
Spognardi, Angelo;
2019
Abstract
Since decades, genetic algorithms have been used as an effective heuristic to solve optimization problems. However, in order to be applied, genetic algorithms may require a string-based genetic encoding of information, which severely limited their applicability when dealing with online accounts. Remarkably, a behavioral modeling technique inspired by biological DNA has been recently proposed – and successfully applied – for monitoring and detecting spambots in Online Social Networks. In this so-called digital DNA representation, the behavioral lifetime of an account is encoded as a sequence of characters, namely a digital DNA sequence. In a previous work, the authors proposed to create synthetic digital DNA sequences that resemble the characteristics of the digital DNA sequences of real accounts. The combination of (i) the capability to model the accounts’ behaviors as digital DNA sequences, (ii) the possibility to create synthetic digital DNA sequences, and (iii) the evolutionary simulations allowed by genetic algorithms, open up the unprecedented opportunity to study – and even anticipate – the evolutionary patterns of modern social spambots. In this paper, we experiment with a novel ad-hoc genetic algorithm that allows to obtain behaviorally evolved spambots. By varying the different parameters of the genetic algorithm, we are able to evaluate the capability of the evolved spambots to escape a state-of-art behavior-based detection technique. Notably, despite such detection technique achieved excellent performances in the recent past, a number of our spambot evolutions manage to escape detection. Our analysis, if carried out at large-scale, would allow to proactively identify possible spambot evolutions capable of evading current detection techniques.File | Dimensione | Formato | |
---|---|---|---|
Cresci_capability_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.48 MB
Formato
Adobe PDF
|
3.48 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.