Finite mixture models are often used to classify two- (units and variables) or three- (units, variables and occasions) way data. However, two issues arise: a huge number of variables and/or occasions implies a huge number of model parameters; the existence of noise variables (and/or occasions) could mask the true cluster structure. The main aim of this paper is to reduce the number of model parameters by identifying a sub-space containing the information needed to classify the observations. This should help in identifying noise variables and/or occasions. The maximum likelihood model estimation is carried out through an EM-like algorithm. The effectiveness of the proposal is assessed through a simulation study and some applications to real data.

Mixture models for simultaneous classification and reduction of three-way data / Rocci, Roberto; Vichi, Maurizio; Ranalli, Monia. - (2017), pp. 26-31. (Intervento presentato al convegno CLADAG 2017 tenutosi a Milano).

Mixture models for simultaneous classification and reduction of three-way data

Roberto Rocci;Maurizio Vichi;Monia Ranalli
2017

Abstract

Finite mixture models are often used to classify two- (units and variables) or three- (units, variables and occasions) way data. However, two issues arise: a huge number of variables and/or occasions implies a huge number of model parameters; the existence of noise variables (and/or occasions) could mask the true cluster structure. The main aim of this paper is to reduce the number of model parameters by identifying a sub-space containing the information needed to classify the observations. This should help in identifying noise variables and/or occasions. The maximum likelihood model estimation is carried out through an EM-like algorithm. The effectiveness of the proposal is assessed through a simulation study and some applications to real data.
2017
CLADAG 2017
three-way data, cluster analysis, dimensionality reduction, mixture models, Tucker2
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Mixture models for simultaneous classification and reduction of three-way data / Rocci, Roberto; Vichi, Maurizio; Ranalli, Monia. - (2017), pp. 26-31. (Intervento presentato al convegno CLADAG 2017 tenutosi a Milano).
File allegati a questo prodotto
File Dimensione Formato  
Rocci_Mixture-models_2017_red.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.31 MB
Formato Adobe PDF
4.31 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1347883
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact