We propose a latent Gaussian mixture model to classify ordinal data. The observed data are considered as a discretization of an underlying latent mixture. A pairwise likelihood approach is used to evaluate a multidimensional integral that cannot be written in a closed form. The model is estimated within the expectationmaximization framework.

Mixture models for ordinal data: a pairwise likelihood approach / Ranalli, Monia; Rocci, Roberto. - (2013), pp. 396-399. (Intervento presentato al convegno 9th Meeting of the Classification and Data Analysis Group tenutosi a Modena).

Mixture models for ordinal data: a pairwise likelihood approach

RANALLI, MONIA
Primo
;
roberto Rocci
2013

Abstract

We propose a latent Gaussian mixture model to classify ordinal data. The observed data are considered as a discretization of an underlying latent mixture. A pairwise likelihood approach is used to evaluate a multidimensional integral that cannot be written in a closed form. The model is estimated within the expectationmaximization framework.
2013
9th Meeting of the Classification and Data Analysis Group
Mixture models, Ordinal data, Pairwise likelihood, EM algorithm
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Mixture models for ordinal data: a pairwise likelihood approach / Ranalli, Monia; Rocci, Roberto. - (2013), pp. 396-399. (Intervento presentato al convegno 9th Meeting of the Classification and Data Analysis Group tenutosi a Modena).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1347562
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact