In this work, we introduce a model for circular data analysis to robustly estimate parameters, under a longitudinal clustering setting. A hidden Markov model for longitudinal circular data combined with a uniform conditional density on the circle to capture noise observations is proposed. A set of exogenous covariates is available; they are assumed to affect the evolution of clustering over time. Parameter estimation is carried out through a hybrid expectation–maximization algorithm, using recursions widely adopted in the hidden Markov model literature. Examples of application of the proposal on real and simulated data are performed to show the effectiveness of the proposal.

Model-based clustering for noisy longitudinal circular data, with application to animal movement / Ranalli, M.; Maruotti, A.. - In: ENVIRONMETRICS. - ISSN 1180-4009. - (2019), p. e2572. [10.1002/env.2572]

Model-based clustering for noisy longitudinal circular data, with application to animal movement

Ranalli M.
;
2019

Abstract

In this work, we introduce a model for circular data analysis to robustly estimate parameters, under a longitudinal clustering setting. A hidden Markov model for longitudinal circular data combined with a uniform conditional density on the circle to capture noise observations is proposed. A set of exogenous covariates is available; they are assumed to affect the evolution of clustering over time. Parameter estimation is carried out through a hybrid expectation–maximization algorithm, using recursions widely adopted in the hidden Markov model literature. Examples of application of the proposal on real and simulated data are performed to show the effectiveness of the proposal.
2019
animal movement; hidden Markov models; projected normal distribution; robust clustering
01 Pubblicazione su rivista::01a Articolo in rivista
Model-based clustering for noisy longitudinal circular data, with application to animal movement / Ranalli, M.; Maruotti, A.. - In: ENVIRONMETRICS. - ISSN 1180-4009. - (2019), p. e2572. [10.1002/env.2572]
File allegati a questo prodotto
File Dimensione Formato  
Ranalli_model-based-clustering_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 597.86 kB
Formato Adobe PDF
597.86 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1347531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact