Multidimensional sensors represent an increasingly popular, yet challenging data source in modern statistics. Using tools from the emerging branch of Topological Data Analysis (TDA), we address two issues frequently encountered when analysing sensor data, namely their (often) high dimension and their sensibility to the reference system. We show how topological invariants provide a tool for detecting change--points which is robust with respect to both the time resolution we consider and the sensor placement.

Multiresolution topological data analysis for robust activity tracking / Trappolini, Giovanni; Padellini, Tullia; Brutti, Pierpaolo. - (2019), pp. 1119-1124. (Intervento presentato al convegno Smart Statistics for Smart Applications - Italian Statistical Society SIS 2019 tenutosi a Milano - Università Cattolica del Sacro Cuore).

Multiresolution topological data analysis for robust activity tracking

Giovanni Trappolini;Tullia Padellini;Pierpaolo Brutti
2019

Abstract

Multidimensional sensors represent an increasingly popular, yet challenging data source in modern statistics. Using tools from the emerging branch of Topological Data Analysis (TDA), we address two issues frequently encountered when analysing sensor data, namely their (often) high dimension and their sensibility to the reference system. We show how topological invariants provide a tool for detecting change--points which is robust with respect to both the time resolution we consider and the sensor placement.
2019
Smart Statistics for Smart Applications - Italian Statistical Society SIS 2019
topological data analysis; sensors data; machine learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Multiresolution topological data analysis for robust activity tracking / Trappolini, Giovanni; Padellini, Tullia; Brutti, Pierpaolo. - (2019), pp. 1119-1124. (Intervento presentato al convegno Smart Statistics for Smart Applications - Italian Statistical Society SIS 2019 tenutosi a Milano - Università Cattolica del Sacro Cuore).
File allegati a questo prodotto
File Dimensione Formato  
Trappolini_post-print_Multiresolution_2019.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1347018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact