We consider low-energy configurations for the Heitmann–Radin sticky discs functional, in the limit of diverging number of discs. More precisely, we renormalize the Heitmann–Radin potential by subtracting the minimal energy per particle, i.e. the so-called kissing number. For configurations whose energy scales like the perimeter, we prove a compactness result which shows the emergence of polycrystalline structures: The empirical measure converges to a set of finite perimeter, while a microscopic variable, representing the orientation of the underlying lattice, converges to a locally constant function. Whenever the limit configuration is a single crystal, i.e. it has constant orientation, we show that the Γ-limit is the anisotropic perimeter, corresponding to the Finsler metric determined by the orientation of the single crystal.

Γ -Convergence of the Heitmann–Radin Sticky Disc Energy to the Crystalline Perimeter / De Luca, L.; Novaga, M.; Ponsiglione, M.. - In: JOURNAL OF NONLINEAR SCIENCE. - ISSN 0938-8974. - 29:4(2019), pp. 1273-1299. [10.1007/s00332-018-9517-3]

Γ -Convergence of the Heitmann–Radin Sticky Disc Energy to the Crystalline Perimeter

Ponsiglione M.
2019

Abstract

We consider low-energy configurations for the Heitmann–Radin sticky discs functional, in the limit of diverging number of discs. More precisely, we renormalize the Heitmann–Radin potential by subtracting the minimal energy per particle, i.e. the so-called kissing number. For configurations whose energy scales like the perimeter, we prove a compactness result which shows the emergence of polycrystalline structures: The empirical measure converges to a set of finite perimeter, while a microscopic variable, representing the orientation of the underlying lattice, converges to a locally constant function. Whenever the limit configuration is a single crystal, i.e. it has constant orientation, we show that the Γ-limit is the anisotropic perimeter, corresponding to the Finsler metric determined by the orientation of the single crystal.
2019
Crystallization, polycrystals, sticky discs, Γ-convergence
01 Pubblicazione su rivista::01a Articolo in rivista
Γ -Convergence of the Heitmann–Radin Sticky Disc Energy to the Crystalline Perimeter / De Luca, L.; Novaga, M.; Ponsiglione, M.. - In: JOURNAL OF NONLINEAR SCIENCE. - ISSN 0938-8974. - 29:4(2019), pp. 1273-1299. [10.1007/s00332-018-9517-3]
File allegati a questo prodotto
File Dimensione Formato  
De Luca_ΓConvergence_2019.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 438.4 kB
Formato Adobe PDF
438.4 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1344540
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact