An existence and uniqueness result, up to fattening, for crystalline mean curvature flows with forcing and arbitrary (convex) mobilities is proven. This is achieved by introducing a new notion of solution to the corresponding level set formulation. Such a solution satisfies the comparison principle and a stability property with respect to the approximation by suitably regularized problems. The results are valid in any dimension and for arbitrary, possibly unbounded, initial closed sets. The approach accounts for the possible presence of a time-dependent bounded forcing term, with spatial Lipschitz continuity. As a byproduct of the analysis, the problem of the convergence of the Almgren-Taylor-Wang minimizing movements scheme to a unique (up to fattening) ''flat flow'' in the case of general, possibly crystalline, anisotropies is settled.
Existence and uniqueness for anisotropic and crystalline mean curvature flows / Chambolle, A.; Morini, M.; Novaga, M.; Ponsiglione, M.. - In: JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0894-0347. - 32:3(2019), pp. 779-824. [10.1090/jams/919]
Existence and uniqueness for anisotropic and crystalline mean curvature flows
Ponsiglione M.
2019
Abstract
An existence and uniqueness result, up to fattening, for crystalline mean curvature flows with forcing and arbitrary (convex) mobilities is proven. This is achieved by introducing a new notion of solution to the corresponding level set formulation. Such a solution satisfies the comparison principle and a stability property with respect to the approximation by suitably regularized problems. The results are valid in any dimension and for arbitrary, possibly unbounded, initial closed sets. The approach accounts for the possible presence of a time-dependent bounded forcing term, with spatial Lipschitz continuity. As a byproduct of the analysis, the problem of the convergence of the Almgren-Taylor-Wang minimizing movements scheme to a unique (up to fattening) ''flat flow'' in the case of general, possibly crystalline, anisotropies is settled.File | Dimensione | Formato | |
---|---|---|---|
Chambolle_postprint_Existence_2019.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
537.32 kB
Formato
Adobe PDF
|
537.32 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.