We study the ergodic problem for fully nonlinear operators which may be singular or degenerate when the gradient of solutions vanishes. We prove the convergence of both explosive solutions and solutions of Dirichlet problems for approximating equations. We further characterize the ergodic constant as the infimum of constants for which there exist bounded sub-solutions. As intermediate results of independent interest, we prove a priori Lipschitz estimates depending only on the norm of the zeroth order term, and a comparison principle for equations having no zero order terms.

Ergodic pairs for singular or degenerate fully nonlinear operators / Birindelli, Isabella; Demengel, Françoise; Leoni, Fabiana. - In: ESAIM. COCV. - ISSN 1292-8119. - 25:(2019). [10.1051/cocv/2018070]

Ergodic pairs for singular or degenerate fully nonlinear operators

Birindelli, Isabella;Leoni, Fabiana
2019

Abstract

We study the ergodic problem for fully nonlinear operators which may be singular or degenerate when the gradient of solutions vanishes. We prove the convergence of both explosive solutions and solutions of Dirichlet problems for approximating equations. We further characterize the ergodic constant as the infimum of constants for which there exist bounded sub-solutions. As intermediate results of independent interest, we prove a priori Lipschitz estimates depending only on the norm of the zeroth order term, and a comparison principle for equations having no zero order terms.
2019
Fully nonlinear equations; degeneracy; ergodic pairs; explosive solutions
01 Pubblicazione su rivista::01a Articolo in rivista
Ergodic pairs for singular or degenerate fully nonlinear operators / Birindelli, Isabella; Demengel, Françoise; Leoni, Fabiana. - In: ESAIM. COCV. - ISSN 1292-8119. - 25:(2019). [10.1051/cocv/2018070]
File allegati a questo prodotto
File Dimensione Formato  
Birindelli_Ergodic-pairs_2019.pdf

accesso aperto

Note: https://www.esaim-cocv.org/articles/cocv/abs/2019/01/cocv180012/cocv180012.html
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 513.23 kB
Formato Adobe PDF
513.23 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1344121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact