The challenge to obtain from the Euclidean Bethe-Salpeter amplitude the amplitude in Minkowski is solved by resorting to un-Wick rotating the Euclidean homogeneous integral equation. The results obtained with this new practical method for the amputated Bethe-Salpeter amplitude for a two-boson bound state reveals a rich analytic structure of this amplitude, which can be traced back to the Minkowski space Bethe-Salpeter equation using the Nakanishi integral representation. The method can be extended to small rotation angles bringing the Euclidean solution closer to the Minkowski one and could allow in principle the extraction of the longitudinal parton density functions and momentum distribution amplitude, for example.
The Bethe-Salpeter approach to bound states: From Euclidean to Minkowski space / Castro, A.; Ydrefors, E.; De Paula, W.; Frederico, T.; De Alvarenga Nogueira, J. H.; Maris, P.. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - 1291:1(2019), p. 012006. [10.1088/1742-6596/1291/1/012006]
The Bethe-Salpeter approach to bound states: From Euclidean to Minkowski space
De Alvarenga Nogueira J. H.;
2019
Abstract
The challenge to obtain from the Euclidean Bethe-Salpeter amplitude the amplitude in Minkowski is solved by resorting to un-Wick rotating the Euclidean homogeneous integral equation. The results obtained with this new practical method for the amputated Bethe-Salpeter amplitude for a two-boson bound state reveals a rich analytic structure of this amplitude, which can be traced back to the Minkowski space Bethe-Salpeter equation using the Nakanishi integral representation. The method can be extended to small rotation angles bringing the Euclidean solution closer to the Minkowski one and could allow in principle the extraction of the longitudinal parton density functions and momentum distribution amplitude, for example.File | Dimensione | Formato | |
---|---|---|---|
Castro_Bethe-Salpeter_2019.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
640.62 kB
Formato
Adobe PDF
|
640.62 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.