Manifold multidimensional concepts are explained via a tree-shape structure by taking into account the nested hierarchical partition of variables. The root of the tree is a general concept which includes more specific ones. In order to detect the different specific concepts at each level of the hierarchy, we can identify two different features regarding groups of variables: the internal consistency of a concept and the correlation between concepts. Thus, given a data positive correlation matrix, we reconstruct the latter via an ultrametric correlation matrix which detects hierarchical concepts by looking for their internal consistency and the correlation between them measured by relative indices.
Dimensionality reduction via hierarchical factorial structure / Cavicchia, Carlo; Vichi, Maurizio; Zaccaria, Giorgia. - (2019), pp. 116-119. (Intervento presentato al convegno CLADAG 2019, the 12th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS). tenutosi a Cassino; Italy).
Dimensionality reduction via hierarchical factorial structure
Cavicchia, Carlo
;Vichi, Maurizio;ZACCARIA, GIORGIA
2019
Abstract
Manifold multidimensional concepts are explained via a tree-shape structure by taking into account the nested hierarchical partition of variables. The root of the tree is a general concept which includes more specific ones. In order to detect the different specific concepts at each level of the hierarchy, we can identify two different features regarding groups of variables: the internal consistency of a concept and the correlation between concepts. Thus, given a data positive correlation matrix, we reconstruct the latter via an ultrametric correlation matrix which detects hierarchical concepts by looking for their internal consistency and the correlation between them measured by relative indices.File | Dimensione | Formato | |
---|---|---|---|
Cavicchia_frontespizio_reduction-hierarchical-factorial_2019.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
501 kB
Formato
Adobe PDF
|
501 kB | Adobe PDF | |
Cavicchia_reduction-hierarchical-factorial_201.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
385.04 kB
Formato
Adobe PDF
|
385.04 kB | Adobe PDF | |
Cavicchia_indice_reduction-hierarchical-factorial_2019.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
62.46 kB
Formato
Adobe PDF
|
62.46 kB | Adobe PDF | |
Cavicchia_quarta_reduction-hierarchical-factorial_2019.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
141.94 kB
Formato
Adobe PDF
|
141.94 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.