Manifold multidimensional concepts are explained via a tree-shape structure by taking into account the nested hierarchical partition of variables. The root of the tree is a general concept which includes more specific ones. In order to detect the different specific concepts at each level of the hierarchy, we can identify two different features regarding groups of variables: the internal consistency of a concept and the correlation between concepts. Thus, given a data positive correlation matrix, we reconstruct the latter via an ultrametric correlation matrix which detects hierarchical concepts by looking for their internal consistency and the correlation between them measured by relative indices.

Dimensionality reduction via hierarchical factorial structure / Cavicchia, Carlo; Vichi, Maurizio; Zaccaria, Giorgia. - (2019), pp. 116-119. (Intervento presentato al convegno CLADAG 2019, the 12th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS). tenutosi a Cassino; Italy).

Dimensionality reduction via hierarchical factorial structure

Cavicchia, Carlo
;
Vichi, Maurizio;ZACCARIA, GIORGIA
2019

Abstract

Manifold multidimensional concepts are explained via a tree-shape structure by taking into account the nested hierarchical partition of variables. The root of the tree is a general concept which includes more specific ones. In order to detect the different specific concepts at each level of the hierarchy, we can identify two different features regarding groups of variables: the internal consistency of a concept and the correlation between concepts. Thus, given a data positive correlation matrix, we reconstruct the latter via an ultrametric correlation matrix which detects hierarchical concepts by looking for their internal consistency and the correlation between them measured by relative indices.
2019
CLADAG 2019, the 12th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS).
ultrametric matrix; hierarchical latent concepts; correlation matrix; partition of variables
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Dimensionality reduction via hierarchical factorial structure / Cavicchia, Carlo; Vichi, Maurizio; Zaccaria, Giorgia. - (2019), pp. 116-119. (Intervento presentato al convegno CLADAG 2019, the 12th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS). tenutosi a Cassino; Italy).
File allegati a questo prodotto
File Dimensione Formato  
Cavicchia_frontespizio_reduction-hierarchical-factorial_2019.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 501 kB
Formato Adobe PDF
501 kB Adobe PDF
Cavicchia_reduction-hierarchical-factorial_201.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 385.04 kB
Formato Adobe PDF
385.04 kB Adobe PDF
Cavicchia_indice_reduction-hierarchical-factorial_2019.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 62.46 kB
Formato Adobe PDF
62.46 kB Adobe PDF
Cavicchia_quarta_reduction-hierarchical-factorial_2019.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 141.94 kB
Formato Adobe PDF
141.94 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1341564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact