Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments --- as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER --- to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High-Luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity "dark showers", highlighting opportunities for expanding the LHC reach for these signals.

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider / Juliette, Alimena; James, Beacham; Martino, Borsato; Yangyang, Cheng; Xabier Cid Vidal, ; Giovanna, Cottin; Albert De Roeck, ; Nishita, Desai; David, Curtin; Evans, Jared A.; Simon, Knapen; Sabine, Kraml; Andre, Lessa; Zhen, Liu; Sascha, Mehlhase; Ramsey-Musolf, Michael J.; Heather, Russell; Jessie, Shelton; Brian, Shuve; Monica, Verducci; Jose, Zurita; Todd, Adams; Michael, Adersberger; Cristiano, Alpigiani; Artur, Apresyan; Robert John Bainbridge, ; Varvara, Batozskaya; Hugues, Beauchesne; Lisa, Benato; Berlendis, S.; Eshwen, Bhal; Freya, Blekman; Christina, Borovilou; Jamie, Boyd; Brau, Benjamin P.; Lene, Bryngemark; Oliver, Buchmueller; Malte, Buschmann; William, Buttinger; Mario, Campanelli; Cari, Cesarotti; Chunhui, Chen; Hsin-Chia, Cheng; Sanha, Cheong; Matthew, Citron; Andrea, Coccaro; Coco, V.; Eric, Conte; Félix, Cormier; Corpe, Louie D.; Nathaniel, Craig; Yanou, Cui; Elena, Dall'Occo; Dallapiccola, C.; Darwish, M. R.; Alessandro, Davoli; Annapaola de Cosa, ; Andrea De Simone, ; Luigi Delle Rose, ; Deppisch, Frank F.; Biplab, Dey; Diamond, Miriam D.; Dienes, Keith R.; Sven, Dildick; Babette, Döbrich; Marco, Drewes; Melanie, Eich; Elsawy, M.; Alberto Escalante del Valle, ; Gabriel, Facini; Marco, Farina; Feng, Jonathan L.; Oliver, Fischer; Flaecher, H. U.; Patrick, Foldenauer; Marat, Freytsis; Benjamin, Fuks; Iftah, Galon; Yuri, Gershtein; Giagu, Stefano; Andrea, Giammanco; Gligorov, Vladimir V.; Tobias, Golling; Sergio, Grancagnolo; Gustavino, Giuliano; Andrew, Haas; Kristian, Hahn; Jan, Hajer; Ahmed, Hammad; Lukas, Heinrich; Jan, Heisig; Helo, J. C.; Gavin, Hesketh; Hill, Christopher S.; Martin, Hirsch; Hohlmann, M.; Hulsbergen, W.; John, Huth; Philip, Ilten; Thomas, Jacques; Bodhitha, Jayatilaka; Geng-Yuan, Jeng; Johns, K. A.; Toshiaki, Kaji; Gregor, Kasieczka; Yevgeny, Kats; Malgorzata, Kazana; Henning, Keller; Khlopov, Maxim Yu.; Felix, Kling; Kolberg, Ted R.; Igor, Kostiuk; Emma Sian Kuwertz, ; Audrey, Kvam; Greg, Landsberg; Gaia, Lanfranchi; Iñaki, Lara; Alexander, Ledovskoy; Dylan, Linthorne; Jia, Liu; Longarini, Iacopo; Steven, Lowette; Henry, Lubatti; Margaret, Lutz; Jingyu, Luo; Judita, Mamužić; Matthieu, Marinangeli; Alberto, Mariotti; Daniel, Marlow; Matthew, Mccullough; Kevin, Mcdermott; Mermod, P.; David, Milstead; Mitsou, Vasiliki A.; Javier Montejo Berlingen, ; Filip, Moortgat; Alessandro, Morandini; Alice Polyxeni Morris, ; David Michael Morse, ; Stephen, Mrenna; Benjamin, Nachman; Miha, Nemevšek; Fabrizio, Nesti; Christian, Ohm; Silvia, Pascoli; Kevin, Pedro; Cristián, Peña; Karla Josefina Pena Rodriguez, ; Jónatan, Piedra; Pinfold, James L.; Policicchio, Antonio; Goran, Popara; Jessica, Prisciandaro; Mason, Proffitt; Giorgia, Rauco; Federico, Redi; Matthew, Reece; Allison Reinsvold Hall, ; Rejeb Sfar, H.; Sophie, Renner; Amber, Roepe; Manfredi, Ronzani; Ennio, Salvioni; Arka, Santra; Ryu, Sawada; Jakub, Scholtz; Philip, Schuster; Pedro, Schwaller; Sebastiani, Cristiano; Sezen, Sekmen; Michele, Selvaggi; Weinan, Si; Livia, Soffi; Daniel, Stolarski; David, Stuart; John Stupak III, ; Kevin, Sung; Wendy, Taylor; Sebastian, Templ; Brooks, Thomas; Emma, Torró-Pastor; Daniele, Trocino; Sebastian, Trojanowski; Marco, Trovato; Yuhsin, Tsai; Tully, C. G.; Tamás Álmos Vámi, ; Juan Carlos Vasquez, ; Carlos Vázquez Sierra, ; Vellidis, K.; Basile, Vermassen; Martina, Vit; Walker, Devin G. E.; Xiao-Ping, Wang; Gordon, Watts; Xie, Si; Melissa, Yexley; Charles, Young; Jiang-Hao, Yu; Piotr, Zalewski; Yongchao, Zhang. - (2019).

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

Stefano Giagu;Giuliano Gustavino;LONGARINI, IACOPO;Antonio Policicchio;Cristiano Sebastiani;
2019

Abstract

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments --- as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER --- to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High-Luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity "dark showers", highlighting opportunities for expanding the LHC reach for these signals.
2019
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1341297
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 154
social impact