The mitogen-induced D-type cyclins (D1, D2 and D3) are regulatory subunits of the cyclin-dependent kinases CDK4 and CDK6 that drive progression through the G1 phase of the cell cycle. In skeletal muscle, cyclin D3 plays a unique function in controlling the proliferation/differentiation balance of myogenic progenitor cells. Here, we show that cyclin D3 also performs a novel function, regulating muscle fiber type-specific gene expression. Mice lacking cyclin D3 display an increased number of myofibers with higher oxidative capacity in fast-twitch muscle groups, primarily composed of myofibers that utilize glycolytic metabolism. The remodeling of myofibers toward a slower, more oxidative phenotype is accompanied by enhanced running endurance and increased energy expenditure and fatty acid oxidation. In addition, gene expression profiling of cyclin D3-/- muscle reveals the upregulation of genes encoding proteins involved in the regulation of contractile function and metabolic markers specifically expressed in slow-twitch and fast-oxidative myofibers, many of which are targets of MEF2 and/or NFAT transcription factors. Furthermore, cyclin D3 can repress the calcineurin- or MEF2-dependent activation of a slow fiber-specific promoter in cultured muscle cells. These data suggest that cyclin D3 regulates muscle fiber type phenotype, and consequently whole body metabolism, by antagonizing the activity of MEF2 and/or NFAT.
Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism / Giannattasio, Silvia; Giacovazzo, Giacomo; Bonato, Agnese; Caruso, Carla; Luvisetto, Siro; Coccurello, Roberto; Caruso, Maurizia. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 8:1(2018), pp. 1-18. [10.1038/s41598-018-31090-5]
Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism
Bonato, Agnese;Coccurello, Roberto;
2018
Abstract
The mitogen-induced D-type cyclins (D1, D2 and D3) are regulatory subunits of the cyclin-dependent kinases CDK4 and CDK6 that drive progression through the G1 phase of the cell cycle. In skeletal muscle, cyclin D3 plays a unique function in controlling the proliferation/differentiation balance of myogenic progenitor cells. Here, we show that cyclin D3 also performs a novel function, regulating muscle fiber type-specific gene expression. Mice lacking cyclin D3 display an increased number of myofibers with higher oxidative capacity in fast-twitch muscle groups, primarily composed of myofibers that utilize glycolytic metabolism. The remodeling of myofibers toward a slower, more oxidative phenotype is accompanied by enhanced running endurance and increased energy expenditure and fatty acid oxidation. In addition, gene expression profiling of cyclin D3-/- muscle reveals the upregulation of genes encoding proteins involved in the regulation of contractile function and metabolic markers specifically expressed in slow-twitch and fast-oxidative myofibers, many of which are targets of MEF2 and/or NFAT transcription factors. Furthermore, cyclin D3 can repress the calcineurin- or MEF2-dependent activation of a slow fiber-specific promoter in cultured muscle cells. These data suggest that cyclin D3 regulates muscle fiber type phenotype, and consequently whole body metabolism, by antagonizing the activity of MEF2 and/or NFAT.File | Dimensione | Formato | |
---|---|---|---|
Giannattasio_Lack_2018.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.74 MB
Formato
Adobe PDF
|
2.74 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.