We implement adaptive machine learning techniques to enhance the sensitivity in the estimation of a relative phase shift between two paths of an interferometer. The estimation is realized through single photons measured shot by shot.

Machine learning for experimental single shot phase estimation / Polino, Emanuele; Lumino, Alessandro; Syed Rab, Adil; Milani, Giorgio; Spagnolo, Nicolo'; Sciarrino, Fabio; Nathanwiebe,. - (2019). (Intervento presentato al convegno Quantum Information and Measurement (QIM) V: Quantum Technologies, OSA Technical Digest (Optical Society of America, 2019) tenutosi a Rome; Italy) [10.1364/QIM.2019.T5A.41].

Machine learning for experimental single shot phase estimation

Emanuele Polino;Giorgio Milani;Nicolò Spagnolo;Fabio Sciarrino;
2019

Abstract

We implement adaptive machine learning techniques to enhance the sensitivity in the estimation of a relative phase shift between two paths of an interferometer. The estimation is realized through single photons measured shot by shot.
2019
Quantum Information and Measurement (QIM) V: Quantum Technologies, OSA Technical Digest (Optical Society of America, 2019)
quantum metrology; machine learning; quantum optics
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Machine learning for experimental single shot phase estimation / Polino, Emanuele; Lumino, Alessandro; Syed Rab, Adil; Milani, Giorgio; Spagnolo, Nicolo'; Sciarrino, Fabio; Nathanwiebe,. - (2019). (Intervento presentato al convegno Quantum Information and Measurement (QIM) V: Quantum Technologies, OSA Technical Digest (Optical Society of America, 2019) tenutosi a Rome; Italy) [10.1364/QIM.2019.T5A.41].
File allegati a questo prodotto
File Dimensione Formato  
Polino_Machine-Learning_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 497.05 kB
Formato Adobe PDF
497.05 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1339935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact