We implement adaptive machine learning techniques to enhance the sensitivity in the estimation of a relative phase shift between two paths of an interferometer. The estimation is realized through single photons measured shot by shot.
Machine learning for experimental single shot phase estimation / Polino, Emanuele; Lumino, Alessandro; Syed Rab, Adil; Milani, Giorgio; Spagnolo, Nicolo'; Sciarrino, Fabio; Nathanwiebe,. - (2019). (Intervento presentato al convegno Quantum Information and Measurement (QIM) V: Quantum Technologies, OSA Technical Digest (Optical Society of America, 2019) tenutosi a Rome; Italy) [10.1364/QIM.2019.T5A.41].
Machine learning for experimental single shot phase estimation
Emanuele Polino;Giorgio Milani;Nicolò Spagnolo;Fabio Sciarrino;
2019
Abstract
We implement adaptive machine learning techniques to enhance the sensitivity in the estimation of a relative phase shift between two paths of an interferometer. The estimation is realized through single photons measured shot by shot.File | Dimensione | Formato | |
---|---|---|---|
Polino_Machine-Learning_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
497.05 kB
Formato
Adobe PDF
|
497.05 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.