In the cost per click pricing model, an advertiser pays an ad network only when a user clicks on an ad; in turn, the ad network gives a share of that revenue to the publisher where the ad was impressed. Still, advertisers may be unsatisfied with ad networks charging them for “valueless” clicks, or so-called accidental clicks. These happen when users click on an ad, are redirected to the advertiser website and bounce back without spending any time on the ad landing page. Charging advertisers for such clicks is detrimental in the long term as the advertiser may decide to run their campaigns on other ad networks. In addition, machine-learned click models trained to predict which ad will bring the highest revenue may overestimate an ad click-through rate, and as a consequence negatively impacting revenue for both the ad network and the publisher. In this work, we propose a data-driven method to detect accidental clicks from the perspective of the ad network. We collect observations of time spent by users on a large set of ad landing pages—i.e., dwell time. We notice that the majority of per-ad distributions of dwell time fit to a mixture of distributions, where each component may correspond to a particular type of clicks, the first one being accidental. We then estimate dwell time thresholds of accidental clicks from that component. Using our method to identify accidental clicks, we then propose a technique that smoothly discounts the advertiser’s cost of accidental clicks at billing time. Experiments conducted on a large dataset of ads served on Yahoo mobile apps confirm that our thresholds are stable over time, and revenue loss in the short term is marginal. We also compare the performance of an existing machine-learned click model trained on all ad clicks with that of the same model trained only on non-accidental clicks. There, we observe an increase in both ad click-through rate (+ 3.9%) and revenue (+ 0.2%) on ads served by the Yahoo Gemini network when using the latter. These two applications validate the need to consider accidental clicks for both billing advertisers and training ad click models.

You must have clicked on this ad by mistake! Data-driven identification of accidental clicks on mobile ads with applications to advertiser cost discounting and click-through rate prediction / Tolomei, Gabriele; Lalmas, Mounia; Farahat, Ayman; Haines, Andrew. - In: INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS. - ISSN 2364-415X. - 7:(2019), pp. 53-66. [10.1007/s41060-018-0122-1]

You must have clicked on this ad by mistake! Data-driven identification of accidental clicks on mobile ads with applications to advertiser cost discounting and click-through rate prediction

Gabriele Tolomei;
2019

Abstract

In the cost per click pricing model, an advertiser pays an ad network only when a user clicks on an ad; in turn, the ad network gives a share of that revenue to the publisher where the ad was impressed. Still, advertisers may be unsatisfied with ad networks charging them for “valueless” clicks, or so-called accidental clicks. These happen when users click on an ad, are redirected to the advertiser website and bounce back without spending any time on the ad landing page. Charging advertisers for such clicks is detrimental in the long term as the advertiser may decide to run their campaigns on other ad networks. In addition, machine-learned click models trained to predict which ad will bring the highest revenue may overestimate an ad click-through rate, and as a consequence negatively impacting revenue for both the ad network and the publisher. In this work, we propose a data-driven method to detect accidental clicks from the perspective of the ad network. We collect observations of time spent by users on a large set of ad landing pages—i.e., dwell time. We notice that the majority of per-ad distributions of dwell time fit to a mixture of distributions, where each component may correspond to a particular type of clicks, the first one being accidental. We then estimate dwell time thresholds of accidental clicks from that component. Using our method to identify accidental clicks, we then propose a technique that smoothly discounts the advertiser’s cost of accidental clicks at billing time. Experiments conducted on a large dataset of ads served on Yahoo mobile apps confirm that our thresholds are stable over time, and revenue loss in the short term is marginal. We also compare the performance of an existing machine-learned click model trained on all ad clicks with that of the same model trained only on non-accidental clicks. There, we observe an increase in both ad click-through rate (+ 3.9%) and revenue (+ 0.2%) on ads served by the Yahoo Gemini network when using the latter. These two applications validate the need to consider accidental clicks for both billing advertisers and training ad click models.
2019
accidental ad clicksl; online mobile advertising; dwell time; mixture of distributions; ad cost discounting; click-through rate prediction
01 Pubblicazione su rivista::01a Articolo in rivista
You must have clicked on this ad by mistake! Data-driven identification of accidental clicks on mobile ads with applications to advertiser cost discounting and click-through rate prediction / Tolomei, Gabriele; Lalmas, Mounia; Farahat, Ayman; Haines, Andrew. - In: INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS. - ISSN 2364-415X. - 7:(2019), pp. 53-66. [10.1007/s41060-018-0122-1]
File allegati a questo prodotto
File Dimensione Formato  
Tolomei_clicked_2019.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 942.03 kB
Formato Adobe PDF
942.03 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1338785
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact