The airway epithelium is seriously damaged upon pulmonary Pseudomonas aeruginosa infection, especially in cystic fibrosis (CF) sufferers. Therefore, the discovery of novel anti-infective agents accelerating healing of infected injured tissues is crucial. The antipseudomonal peptides esculentin-1a(1-21)NH2 and its diastereomer Esc(1-21)-1c (Esc peptides) hold promise in this respect. In fact, they stimulate airway epithelial wound repair, but no mechanistic insights are available. Here we demonstrated that this process occurs through promotion of cell migration by an indirect activation of epidermal growth factor receptor mediated by metalloproteinases. Furthermore, we showed an increased expression of metalloproteinase 9, at both gene and protein levels, in peptide-treated bronchial epithelial cells with a functional or mutated form of CF transmembrane conductance regulator. In addition, the two peptides counteracted the inhibitory effect of Pseudomonas lipopolysaccharide (mimicking an infection condition) on the wound healing activity of the airway epithelium, and they enhanced the production of interleukin-8 from both types of cells. Finally, no immunogenicity was discovered for Esc peptides, suggesting their potential safety for clinical usage. Besides representing a step forward in understanding the molecular mechanism underlying the peptide-induced wound healing activity, these studies have contributed to highlight Esc peptides as valuable therapeutics with multiple functions.

Bronchial epithelium repair by esculentin-1a-derived antimicrobial peptides: involvement of metalloproteinase-9 and interleukin-8, and evaluation of peptides' immunogenicity / Cappiello, Floriana; Ranieri, Danilo; Carnicelli, Veronica; Casciaro, Bruno; Chen, Han-Tang; Ferrera, Loretta; Di, Y Peter; Mangoni, Maria Luisa. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 9:1(2019), p. 18988. [10.1038/s41598-019-55426-x]

Bronchial epithelium repair by esculentin-1a-derived antimicrobial peptides: involvement of metalloproteinase-9 and interleukin-8, and evaluation of peptides' immunogenicity

Cappiello, Floriana;Ranieri, Danilo;Casciaro, Bruno;Mangoni, Maria Luisa
2019

Abstract

The airway epithelium is seriously damaged upon pulmonary Pseudomonas aeruginosa infection, especially in cystic fibrosis (CF) sufferers. Therefore, the discovery of novel anti-infective agents accelerating healing of infected injured tissues is crucial. The antipseudomonal peptides esculentin-1a(1-21)NH2 and its diastereomer Esc(1-21)-1c (Esc peptides) hold promise in this respect. In fact, they stimulate airway epithelial wound repair, but no mechanistic insights are available. Here we demonstrated that this process occurs through promotion of cell migration by an indirect activation of epidermal growth factor receptor mediated by metalloproteinases. Furthermore, we showed an increased expression of metalloproteinase 9, at both gene and protein levels, in peptide-treated bronchial epithelial cells with a functional or mutated form of CF transmembrane conductance regulator. In addition, the two peptides counteracted the inhibitory effect of Pseudomonas lipopolysaccharide (mimicking an infection condition) on the wound healing activity of the airway epithelium, and they enhanced the production of interleukin-8 from both types of cells. Finally, no immunogenicity was discovered for Esc peptides, suggesting their potential safety for clinical usage. Besides representing a step forward in understanding the molecular mechanism underlying the peptide-induced wound healing activity, these studies have contributed to highlight Esc peptides as valuable therapeutics with multiple functions.
2019
cell migration; metalloproteinase; antimicrobial peptide; wound healing
01 Pubblicazione su rivista::01a Articolo in rivista
Bronchial epithelium repair by esculentin-1a-derived antimicrobial peptides: involvement of metalloproteinase-9 and interleukin-8, and evaluation of peptides' immunogenicity / Cappiello, Floriana; Ranieri, Danilo; Carnicelli, Veronica; Casciaro, Bruno; Chen, Han-Tang; Ferrera, Loretta; Di, Y Peter; Mangoni, Maria Luisa. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 9:1(2019), p. 18988. [10.1038/s41598-019-55426-x]
File allegati a questo prodotto
File Dimensione Formato  
Cappiello_Bronchial_ 2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1338695
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact