Size-dependent buckling of compressed Bernoulli-Euler nano-beams is investigated by stress-driven nonlocal continuum mechanics. The nonlocal elastic strain is obtained by convoluting the stress field with a suitable smoothing kernel. Incremental equilibrium equations are established by a standard perturbation technique. Higher-order constitutive boundary conditions are naturally inferred by the stress-driven nonlocal integral convolution, equipped with the special bi-exponential kernel. Buckling loads of compressed nano-beams, with kinematic boundary constraints of applicative interest, are numerically calculated and compared with those obtained by the theory of strain gradient elasticity.
Buckling loads of nano-beams in stress-driven nonlocal elasticity / Barretta, R.; Fabbrocino, F.; Luciano, R.; de Sciarra, F. M.; Ruta, G.. - In: MECHANICS OF ADVANCED MATERIALS AND STRUCTURES. - ISSN 1537-6494. - (2019), pp. 1-7. [10.1080/15376494.2018.1501523]
Buckling loads of nano-beams in stress-driven nonlocal elasticity
Ruta G.Membro del Collaboration Group
2019
Abstract
Size-dependent buckling of compressed Bernoulli-Euler nano-beams is investigated by stress-driven nonlocal continuum mechanics. The nonlocal elastic strain is obtained by convoluting the stress field with a suitable smoothing kernel. Incremental equilibrium equations are established by a standard perturbation technique. Higher-order constitutive boundary conditions are naturally inferred by the stress-driven nonlocal integral convolution, equipped with the special bi-exponential kernel. Buckling loads of compressed nano-beams, with kinematic boundary constraints of applicative interest, are numerically calculated and compared with those obtained by the theory of strain gradient elasticity.File | Dimensione | Formato | |
---|---|---|---|
Barretta_Buckling_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.