We propose a mixed variational principle for deducing the generalized Marguerre–von Kármán equations, governing the relatively large deflections of thin elastic shallow shells. These equations account for both non-flat stress-free configurations of the shell and inelastic strains. We implement this formulation by using C interior penalty methods within the UFL language provided by the FEniCS project. We present two numerical examples, with the aim to discuss the role of the shallowness and the inelastic strain, comparing the results with the fully non-linear shell model à la Naghdi and the classical displacement formulation.

A low-order mixed variational principle for the generalized Marguerre–von Kármán equations / Brunetti, M.; Favata, A.; Paolone, A.; Vidoli, S.. - In: MECCANICA. - ISSN 0025-6455. - (2020). [10.1007/s11012-019-01063-7]

A low-order mixed variational principle for the generalized Marguerre–von Kármán equations

Brunetti M.;Favata A.;Paolone A.;Vidoli S.
2020

Abstract

We propose a mixed variational principle for deducing the generalized Marguerre–von Kármán equations, governing the relatively large deflections of thin elastic shallow shells. These equations account for both non-flat stress-free configurations of the shell and inelastic strains. We implement this formulation by using C interior penalty methods within the UFL language provided by the FEniCS project. We present two numerical examples, with the aim to discuss the role of the shallowness and the inelastic strain, comparing the results with the fully non-linear shell model à la Naghdi and the classical displacement formulation.
2020
Interior penalty method; shallow shells; weak form
01 Pubblicazione su rivista::01a Articolo in rivista
A low-order mixed variational principle for the generalized Marguerre–von Kármán equations / Brunetti, M.; Favata, A.; Paolone, A.; Vidoli, S.. - In: MECCANICA. - ISSN 0025-6455. - (2020). [10.1007/s11012-019-01063-7]
File allegati a questo prodotto
File Dimensione Formato  
Brunetti_Low-order_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 587.59 kB
Formato Adobe PDF
587.59 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1337359
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact