A disaccharide is a challenging case for high-resolution H-1 solid-state NMR because of the 24 distinct protons (14 aliphatic and 10 OH) having H-1 chemical shifts that all fall within a narrow range of approximately 3 to 7 ppm. High-resolution H-1 (500 MHz) double-quantum (DQ) combined rotation and multiple pulse sequence (CRAMPS) solid-state NMR spectra of beta-maltose monohydrate are presented. H-1-H-1 DQ-SQ CRAMPS spectra are presented together with H-1 (DQ)-C-13 correlation spectra obtained with a new pulse sequence that correlates a high-resolution H-1 DQ dimension with a C-13 single quantum (SQ) dimension using the refocused INEPT pulse-sequence element to transfer magnetization via one-bond C-13-H-1 J couplings. Compared to the observation of only a single broad peak in a H-1 DQ spectrum recorded at 30 kHz magic-angle spinning (MAS), the use of DUMBO H-1 homonuclear decoupling in the H-1 DQ CRAMPS experiment allows the resolution of distinct DQ correlation peaks which, in combination with first-principles chemical shift calculations based on the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach, enables the assignment of the H-1 resonances to the 24 distinct protons. We believe this to be the first experimental solid-state NMR determination of the hydroxyl OH H-1 chemical shifts for a simple sugar. Variable-temperature H-1-H-1 DQ CRAMPS spectra reveal small increases in the H-1 chemical shifts of the OH resonances upon decreasing the temperature from 348 K to 248 K.

Complete H-1 resonance assignment of beta-maltose from H-1-H-1 DQ-SQ CRAMPS and H-1 (DQ-DUMBO)-C-13 SQ refocused INEPT 2D solid-state NMR spectra and first principles GIPAW calculations / Webber, Amy L.; Elena, Benedicte; Griffin, John M.; Yates, Jonathan R.; Pham, Tran N.; Mauri, Francesco; Pickard, Chris J.; Gil, Ana M.; Stein, Robin; Anne, ; Emsley, Lyndon; Brown, Steven P.. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - 12:26(2010), pp. 6970-6983. [10.1039/c001290d]

Complete H-1 resonance assignment of beta-maltose from H-1-H-1 DQ-SQ CRAMPS and H-1 (DQ-DUMBO)-C-13 SQ refocused INEPT 2D solid-state NMR spectra and first principles GIPAW calculations

Mauri, Francesco;
2010

Abstract

A disaccharide is a challenging case for high-resolution H-1 solid-state NMR because of the 24 distinct protons (14 aliphatic and 10 OH) having H-1 chemical shifts that all fall within a narrow range of approximately 3 to 7 ppm. High-resolution H-1 (500 MHz) double-quantum (DQ) combined rotation and multiple pulse sequence (CRAMPS) solid-state NMR spectra of beta-maltose monohydrate are presented. H-1-H-1 DQ-SQ CRAMPS spectra are presented together with H-1 (DQ)-C-13 correlation spectra obtained with a new pulse sequence that correlates a high-resolution H-1 DQ dimension with a C-13 single quantum (SQ) dimension using the refocused INEPT pulse-sequence element to transfer magnetization via one-bond C-13-H-1 J couplings. Compared to the observation of only a single broad peak in a H-1 DQ spectrum recorded at 30 kHz magic-angle spinning (MAS), the use of DUMBO H-1 homonuclear decoupling in the H-1 DQ CRAMPS experiment allows the resolution of distinct DQ correlation peaks which, in combination with first-principles chemical shift calculations based on the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach, enables the assignment of the H-1 resonances to the 24 distinct protons. We believe this to be the first experimental solid-state NMR determination of the hydroxyl OH H-1 chemical shifts for a simple sugar. Variable-temperature H-1-H-1 DQ CRAMPS spectra reveal small increases in the H-1 chemical shifts of the OH resonances upon decreasing the temperature from 348 K to 248 K.
2010
fisica
01 Pubblicazione su rivista::01a Articolo in rivista
Complete H-1 resonance assignment of beta-maltose from H-1-H-1 DQ-SQ CRAMPS and H-1 (DQ-DUMBO)-C-13 SQ refocused INEPT 2D solid-state NMR spectra and first principles GIPAW calculations / Webber, Amy L.; Elena, Benedicte; Griffin, John M.; Yates, Jonathan R.; Pham, Tran N.; Mauri, Francesco; Pickard, Chris J.; Gil, Ana M.; Stein, Robin; Anne, ; Emsley, Lyndon; Brown, Steven P.. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - 12:26(2010), pp. 6970-6983. [10.1039/c001290d]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1336910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 81
social impact