The incorporation of Mg in hydroxyapatite (HA) was investigated using multinuclear solid state NMR, X-ray absorption spectroscopy (XAS) and computational modeling. High magnetic field Ca-43 solid state NMR and Ca K-edge XAS studies of a similar to 10% Mg-substituted HA were performed, bringing direct evidence of the preferential substitution of Mg in the Ca(II) position. H-1 and P-31 solid state NMR show that the environment of the anions is disordered in this substituted apatite phase. Both Density Functional Theory (DFT) and interatomic potential computations of Mg-substituted HA structures are in agreement with these observations. Indeed, the incorporation of low levels of Mg in the Ca(II) site is found to be more favourable energetically, and the NMR parameters calculated from these optimized structures are consistent with the experimental data. Calculations provide direct insight in the structural modifications of the HA lattice, due to the strong contraction of the M center dot center dot center dot O distances around Mg. Finally, extensive interatomic potential calculations also suggest that a local clustering of Mg within the HA lattice is likely to occur. Such structural characterizations of Mg environments in apatites will favour a better understanding of the biological role of this cation. (C) 2010 Elsevier Ltd. All rights reserved.

Magnesium incorporation into hydroxyapatite / Laurencin, Danielle; Almora-Barrios, Neyvis; de Leeuw, Nora H.; Gervais, Christel; Bonhomme, Christian; Mauri, Francesco; Chrzanowski, Wojciech; Knowles, Jonathan C.; Newport, Robert J.; Wong, Alan; Gan, Zhehong; Smith, Mark E.. - In: BIOMATERIALS. - ISSN 0142-9612. - 32:7(2011), pp. 1826-1837. [10.1016/j.biomaterials.2010.11.017]

Magnesium incorporation into hydroxyapatite

Mauri, Francesco;
2011

Abstract

The incorporation of Mg in hydroxyapatite (HA) was investigated using multinuclear solid state NMR, X-ray absorption spectroscopy (XAS) and computational modeling. High magnetic field Ca-43 solid state NMR and Ca K-edge XAS studies of a similar to 10% Mg-substituted HA were performed, bringing direct evidence of the preferential substitution of Mg in the Ca(II) position. H-1 and P-31 solid state NMR show that the environment of the anions is disordered in this substituted apatite phase. Both Density Functional Theory (DFT) and interatomic potential computations of Mg-substituted HA structures are in agreement with these observations. Indeed, the incorporation of low levels of Mg in the Ca(II) site is found to be more favourable energetically, and the NMR parameters calculated from these optimized structures are consistent with the experimental data. Calculations provide direct insight in the structural modifications of the HA lattice, due to the strong contraction of the M center dot center dot center dot O distances around Mg. Finally, extensive interatomic potential calculations also suggest that a local clustering of Mg within the HA lattice is likely to occur. Such structural characterizations of Mg environments in apatites will favour a better understanding of the biological role of this cation. (C) 2010 Elsevier Ltd. All rights reserved.
2011
Hydroxyapatite; Magnesium; Solid state NMR; X-ray absorptionspectroscopy; Computer modelling; Density functional theory
01 Pubblicazione su rivista::01a Articolo in rivista
Magnesium incorporation into hydroxyapatite / Laurencin, Danielle; Almora-Barrios, Neyvis; de Leeuw, Nora H.; Gervais, Christel; Bonhomme, Christian; Mauri, Francesco; Chrzanowski, Wojciech; Knowles, Jonathan C.; Newport, Robert J.; Wong, Alan; Gan, Zhehong; Smith, Mark E.. - In: BIOMATERIALS. - ISSN 0142-9612. - 32:7(2011), pp. 1826-1837. [10.1016/j.biomaterials.2010.11.017]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1336863
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 308
  • ???jsp.display-item.citation.isi??? 280
social impact