Phase estimation represents a significant example to test the application of quantum theory for enhanced measurements of unknown physical parameters. Several recipes have been developed, allowing to define strategies to reach the ultimate bounds in the asymptotic limit of a large number of trials. However, in certain applications it is crucial to reach such bound when only a small number of probes is employed. Here, we discuss an asymptotically optimal, machine learning based, adaptive single-photon phase estimation protocol that allows us to reach the standard quantum limit when a very limited number of photons is employed.

Machine learning for quantum metrology / Spagnolo, Nicolò; Lumino, Alessandro; Polino, Emanuele; Rab, Adil S.; Wiebe, Nathan; Sciarrino, Fabio. - In: PROCEEDINGS. - ISSN 2504-3900. - 12:1(2019). (Intervento presentato al convegno 11th Italian Quantum Information Science conference tenutosi a Catania; Italy) [10.3390/proceedings2019012028].

Machine learning for quantum metrology

Spagnolo, Nicolò
;
Polino, Emanuele;Sciarrino, Fabio
2019

Abstract

Phase estimation represents a significant example to test the application of quantum theory for enhanced measurements of unknown physical parameters. Several recipes have been developed, allowing to define strategies to reach the ultimate bounds in the asymptotic limit of a large number of trials. However, in certain applications it is crucial to reach such bound when only a small number of probes is employed. Here, we discuss an asymptotically optimal, machine learning based, adaptive single-photon phase estimation protocol that allows us to reach the standard quantum limit when a very limited number of photons is employed.
2019
11th Italian Quantum Information Science conference
quantum metrology; machine learning; phase estimation; adaptive protocols
04 Pubblicazione in atti di convegno::04c Atto di convegno in rivista
Machine learning for quantum metrology / Spagnolo, Nicolò; Lumino, Alessandro; Polino, Emanuele; Rab, Adil S.; Wiebe, Nathan; Sciarrino, Fabio. - In: PROCEEDINGS. - ISSN 2504-3900. - 12:1(2019). (Intervento presentato al convegno 11th Italian Quantum Information Science conference tenutosi a Catania; Italy) [10.3390/proceedings2019012028].
File allegati a questo prodotto
File Dimensione Formato  
Spagnolo_Machine-Learning_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1336709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact