This paper presents a control strategy for enabling a large scale Virtual Power Plant (VPP) constituted by a traditional power plant, distributed Energy Storage Systems (ESSs) and wind turbine driven Doubly Fed Induction Generators (DFIGs) to virtual slack bus functions in electricity transmission networks. The VPP in question is in charge of covering the network losses and a portion of the day ahead generation schedule of unsecured power plants, in presence of short term notifications about possible malicious/natural adverse events affecting them. The objective is pursued by integrating a dynamic optimal power flow problem in a realtime Model Predictive Control framework, and applying a second level of control aimed at keeping the dynamics of the real nonlinear plant subject to wind turbulence in line with the dynamics of the MPC model. Simulation results provide a proof of the proposed concept, showing as the joint coordination of storage devices and wind turbines can be part of the task of providing support actions to the network traditionally delivered by expensive and pollutant legacy power plants.
Risk Adverse Virtual Power Plant Control in Unsecure Power Systems / Giuseppi, A.; Germana, R.; Di Giorgio, A.. - (2018), pp. 210-216. (Intervento presentato al convegno 26th Mediterranean Conference on Control and Automation, MED 2018 tenutosi a Zadar; Croatia) [10.1109/MED.2018.8442768].
Risk Adverse Virtual Power Plant Control in Unsecure Power Systems
Giuseppi A.
;Germana R.
;Di Giorgio A.
2018
Abstract
This paper presents a control strategy for enabling a large scale Virtual Power Plant (VPP) constituted by a traditional power plant, distributed Energy Storage Systems (ESSs) and wind turbine driven Doubly Fed Induction Generators (DFIGs) to virtual slack bus functions in electricity transmission networks. The VPP in question is in charge of covering the network losses and a portion of the day ahead generation schedule of unsecured power plants, in presence of short term notifications about possible malicious/natural adverse events affecting them. The objective is pursued by integrating a dynamic optimal power flow problem in a realtime Model Predictive Control framework, and applying a second level of control aimed at keeping the dynamics of the real nonlinear plant subject to wind turbulence in line with the dynamics of the MPC model. Simulation results provide a proof of the proposed concept, showing as the joint coordination of storage devices and wind turbines can be part of the task of providing support actions to the network traditionally delivered by expensive and pollutant legacy power plants.File | Dimensione | Formato | |
---|---|---|---|
Giuseppi_Risk-Adverse_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.