We discuss the theoretical framework required for the computation of radiative corrections to semileptonic decay rates in lattice simulations, and in particular to those for $K_ell3$ decays. This is an extension of the framework we have developed and successfully implemented for leptonic decays. New issues which arise for semileptonic decays, include the presence of unphysical terms which grow exponentially with the time separation between the insertion of the weak Hamiltonian and the sink for the final-state meson-lepton pair. Such terms must be identified and subtracted. We discuss the cancellation of infrared divergences and show that, with the QED$_mathrm,L$ treatment of the zero mode in the photon propagator, the $O(1/L)$ finite-volume corrections are "universal". These corrections however, depend not only on the semileptonic form factors $f^pm(q^2)$ but also on their derivatives $df^pm/dq^2$. (Here $q$ is the momentum transfer between the initial and final state mesons.) We explain the perturbative calculation which would need to be performed to subtract the $O(1/L)$ finite-volume effects.
Radiative corrections to semileptonic decay rates / Sachrajda, C. T.; Di Carlo, M.; Martinelli, G.; Giusti, D.; Lubicz, V.; Sanfilippo, F.; Simula, S.; Tantalo, N.. - In: POS PROCEEDINGS OF SCIENCE. - ISSN 1824-8039. - (2019). (Intervento presentato al convegno 37th International Symposium on Lattice Field Theory, LATTICE2019 tenutosi a Wuhan; China).
Radiative corrections to semileptonic decay rates
M. Di Carlo;G. Martinelli;N. Tantalo
2019
Abstract
We discuss the theoretical framework required for the computation of radiative corrections to semileptonic decay rates in lattice simulations, and in particular to those for $K_ell3$ decays. This is an extension of the framework we have developed and successfully implemented for leptonic decays. New issues which arise for semileptonic decays, include the presence of unphysical terms which grow exponentially with the time separation between the insertion of the weak Hamiltonian and the sink for the final-state meson-lepton pair. Such terms must be identified and subtracted. We discuss the cancellation of infrared divergences and show that, with the QED$_mathrm,L$ treatment of the zero mode in the photon propagator, the $O(1/L)$ finite-volume corrections are "universal". These corrections however, depend not only on the semileptonic form factors $f^pm(q^2)$ but also on their derivatives $df^pm/dq^2$. (Here $q$ is the momentum transfer between the initial and final state mesons.) We explain the perturbative calculation which would need to be performed to subtract the $O(1/L)$ finite-volume effects.File | Dimensione | Formato | |
---|---|---|---|
Sachrajda_Radiative_2019.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
138.98 kB
Formato
Adobe PDF
|
138.98 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.