At the few-atom-thick limit, transition-metal dichalcogenides (TMDs) exhibit strongly interconnected structural and optoelectronic properties. The possibility to tailor the latter by controlling the former is expected to have a great impact on applied and fundamental research. As shown here, proton irradiation deeply affects the surface morphology of bulk TMD crystals. Protons penetrate the top layer, resulting in the production and progressive accumulation of molecular hydrogen in the first interlayer region. This leads to the blistering of one-monolayer thick domes, which stud the crystal surface and locally turn the dark bulk material into an efficient light emitter. The domes are stable (>2-year lifetime) and robust, and host strong, complex strain fields. Lithographic techniques provide a means to engineer the formation process so that the domes can be produced with well-ordered positions and sizes tunable from the nanometer to the micrometer scale, with important prospects for so far unattainable applications.

Controlled micro/nanodome formation in proton-irradiated bulk transition-metal dichalcogenides / Tedeschi, D.; Blundo, Elena; Felici, M.; Pettinari, G.; Liu, B.; Yildrim, T.; Petroni, E.; Zhang, C.; Zhu, Y.; Sennato, S.; Lu, Y.; Polimeni, A.. - In: ADVANCED MATERIALS. - ISSN 0935-9648. - 31:44(2019), p. 1903795. [10.1002/adma.201903795]

Controlled micro/nanodome formation in proton-irradiated bulk transition-metal dichalcogenides

Tedeschi D.;BLUNDO, ELENA;Felici M.;Pettinari G.;Petroni E.;Zhu Y.;Sennato S.;Polimeni A.
2019

Abstract

At the few-atom-thick limit, transition-metal dichalcogenides (TMDs) exhibit strongly interconnected structural and optoelectronic properties. The possibility to tailor the latter by controlling the former is expected to have a great impact on applied and fundamental research. As shown here, proton irradiation deeply affects the surface morphology of bulk TMD crystals. Protons penetrate the top layer, resulting in the production and progressive accumulation of molecular hydrogen in the first interlayer region. This leads to the blistering of one-monolayer thick domes, which stud the crystal surface and locally turn the dark bulk material into an efficient light emitter. The domes are stable (>2-year lifetime) and robust, and host strong, complex strain fields. Lithographic techniques provide a means to engineer the formation process so that the domes can be produced with well-ordered positions and sizes tunable from the nanometer to the micrometer scale, with important prospects for so far unattainable applications.
2019
2D materials; hydrogen evolution reaction; photoluminescence; Raman; strain; transition-metal dichalcogenides
01 Pubblicazione su rivista::01a Articolo in rivista
Controlled micro/nanodome formation in proton-irradiated bulk transition-metal dichalcogenides / Tedeschi, D.; Blundo, Elena; Felici, M.; Pettinari, G.; Liu, B.; Yildrim, T.; Petroni, E.; Zhang, C.; Zhu, Y.; Sennato, S.; Lu, Y.; Polimeni, A.. - In: ADVANCED MATERIALS. - ISSN 0935-9648. - 31:44(2019), p. 1903795. [10.1002/adma.201903795]
File allegati a questo prodotto
File Dimensione Formato  
Polimeni_Bulk-transition.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1336222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 69
social impact