This paper is a natural continuation of our previous work on conformal embeddings of vertex algebras [6], [7], [8]. Here we consider conformal embeddings in simple affine vertex superalgebra V_k(g) where g=g_0+g_1 is a basic classical simple Lie superalgebra. Let VV_k(g_0) be the subalgebra of V_k(g) generated by g_0. We first classify all levels k for which the embedding VV_k(g_0) in V_k(g) is conformal. Next we prove that, for a large family of such conformal levels, V_k(g) is a completely reducible VV_k(g_0)–module and obtain decomposition rules. Proofs are based on fusion rules arguments and on the representation theory of certain affine vertex algebras. The most interesting case is the decomposition of V_{-2}(sop(2n+8|2n)) as a finite, non simple current extension of V_{-2}(D_{n+4})otimes V_1(C_n). This decomposition uses our previous work [10] on the representation theory of V_{-2}(D_{n+4}). We also study conformal embeddings gl(n|m) ---> sl(n+1|m) and in most cases we obtain decomposition rules.

Conformal embeddings in affine vertex superalgebras / Adamovic, Drazen; Mosender Frajria, Pierluigi; Papi, Paolo; Perse, Ozren. - In: ADVANCES IN MATHEMATICS. - ISSN 1090-2082. - (2019). [10.1016/j.aim.2019.106918]

Conformal embeddings in affine vertex superalgebras

Paolo Papi
;
2019

Abstract

This paper is a natural continuation of our previous work on conformal embeddings of vertex algebras [6], [7], [8]. Here we consider conformal embeddings in simple affine vertex superalgebra V_k(g) where g=g_0+g_1 is a basic classical simple Lie superalgebra. Let VV_k(g_0) be the subalgebra of V_k(g) generated by g_0. We first classify all levels k for which the embedding VV_k(g_0) in V_k(g) is conformal. Next we prove that, for a large family of such conformal levels, V_k(g) is a completely reducible VV_k(g_0)–module and obtain decomposition rules. Proofs are based on fusion rules arguments and on the representation theory of certain affine vertex algebras. The most interesting case is the decomposition of V_{-2}(sop(2n+8|2n)) as a finite, non simple current extension of V_{-2}(D_{n+4})otimes V_1(C_n). This decomposition uses our previous work [10] on the representation theory of V_{-2}(D_{n+4}). We also study conformal embeddings gl(n|m) ---> sl(n+1|m) and in most cases we obtain decomposition rules.
2019
Conformal embedding; vertex operator algebra; affine lie superalgebra; central charge
01 Pubblicazione su rivista::01a Articolo in rivista
Conformal embeddings in affine vertex superalgebras / Adamovic, Drazen; Mosender Frajria, Pierluigi; Papi, Paolo; Perse, Ozren. - In: ADVANCES IN MATHEMATICS. - ISSN 1090-2082. - (2019). [10.1016/j.aim.2019.106918]
File allegati a questo prodotto
File Dimensione Formato  
Adamovic_Conformal_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 704.51 kB
Formato Adobe PDF
704.51 kB Adobe PDF   Contatta l'autore
Adamovic_postprint_Conformal_2019.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 429.68 kB
Formato Adobe PDF
429.68 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1332695
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact