Motivated by recent advances in deep domain adaptation, this paper introduces a deep architecture for estimating 3D keypoints when the training (source) and the test (target) images greatly differ in terms of visual appearance (domain shift). Our approach operates by promoting domain distribution alignment in the feature space adopting batch normalization-based techniques. Furthermore, we propose to collect statistics about 3D keypoints positions of the source training data and to use this prior information to constrain predictions on the target domain introducing a loss derived from Multidimensional Scaling. We conduct an extensive experimental evaluation considering three publicly available benchmarks and show that our approach out-performs state-of-the-art domain adaptation methods for 3D keypoints predictions.

Structured Domain Adaptation for 3D Keypoint Estimation / Osterno Vasconcelos, Levi; Mancini, Massimiliano; Boscaini, Davide; Caputo, Barbara; Ricci, Elisa. - (2019), pp. 57-66. (Intervento presentato al convegno 2019 International Conference on 3D Vision (3DV) tenutosi a Quebec; Canada) [10.1109/3DV.2019.00016].

Structured Domain Adaptation for 3D Keypoint Estimation

Massimiliano Mancini;Barbara Caputo;
2019

Abstract

Motivated by recent advances in deep domain adaptation, this paper introduces a deep architecture for estimating 3D keypoints when the training (source) and the test (target) images greatly differ in terms of visual appearance (domain shift). Our approach operates by promoting domain distribution alignment in the feature space adopting batch normalization-based techniques. Furthermore, we propose to collect statistics about 3D keypoints positions of the source training data and to use this prior information to constrain predictions on the target domain introducing a loss derived from Multidimensional Scaling. We conduct an extensive experimental evaluation considering three publicly available benchmarks and show that our approach out-performs state-of-the-art domain adaptation methods for 3D keypoints predictions.
2019
2019 International Conference on 3D Vision (3DV)
Three-dimensional displays;Two dimensional displays;Estimation;Task analysis;Adaptation models;Predictive models;Computer architecture;Domain Adaptation;Structured Domain Adaptation;3D Keypoints;Deep Learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Structured Domain Adaptation for 3D Keypoint Estimation / Osterno Vasconcelos, Levi; Mancini, Massimiliano; Boscaini, Davide; Caputo, Barbara; Ricci, Elisa. - (2019), pp. 57-66. (Intervento presentato al convegno 2019 International Conference on 3D Vision (3DV) tenutosi a Quebec; Canada) [10.1109/3DV.2019.00016].
File allegati a questo prodotto
File Dimensione Formato  
Vasconcelos_Structured-Domain-Adaptation_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 812.78 kB
Formato Adobe PDF
812.78 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1331859
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact