We present a new empirical plagioclase-liquid hygrometer for estimating the amount of H2O dissolved in trachytic magmas. The hygrometer is based on the exchange reaction of anorthite between plagioclase and liquid, and is calibrated using crystallization experiments where the concentration of H2O in quenched glasses has been accurately determined based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. The multiple linear regression of plagioclase-liquid cation fractions and components from experimental data obtained at 150–202 MPa, 850–1020 ◦C, 1.17–7.57 wt. % H2O and ∆NNO + 2.5 buffer, yields to a highly accurate model with uncertainty of only ±0.29 wt. % H2O. The model reliability has been demonstrated using an independent test data set consisting of crystallization experiments from the literature and thermodynamically derived compositions. The fairly good convergence between our model calibration and the test data set excludes systematic H2O overestimates or underestimates caused by miscalibration and data overfitting. The plagioclase-liquid hygrometer from this study has been applied to trachyandesitic (latitic) and trachytic products erupted over the last 1000 years at the La Fossa cone of Vulcano Island (Aeolian Islands, Southern Italy). Results from calculations indicate that the concentration of H2O in the latitic and trachytic melts is comprised between ~2.5 and ~3.5 wt. %. These values are in good agreement with data from melt inclusions and, overall, testify to low-pressure, open-system differentiation of trachytic magmas under strong degassing conditions

A new plagioclase-liquid hygrometer specific to trachytic systems / Masotta, M.; Mollo, S.. - In: MINERALS. - ISSN 2075-163X. - 9:6(2019). [10.3390/min9060375]

A new plagioclase-liquid hygrometer specific to trachytic systems

Mollo S.
Secondo
Writing – Original Draft Preparation
2019

Abstract

We present a new empirical plagioclase-liquid hygrometer for estimating the amount of H2O dissolved in trachytic magmas. The hygrometer is based on the exchange reaction of anorthite between plagioclase and liquid, and is calibrated using crystallization experiments where the concentration of H2O in quenched glasses has been accurately determined based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. The multiple linear regression of plagioclase-liquid cation fractions and components from experimental data obtained at 150–202 MPa, 850–1020 ◦C, 1.17–7.57 wt. % H2O and ∆NNO + 2.5 buffer, yields to a highly accurate model with uncertainty of only ±0.29 wt. % H2O. The model reliability has been demonstrated using an independent test data set consisting of crystallization experiments from the literature and thermodynamically derived compositions. The fairly good convergence between our model calibration and the test data set excludes systematic H2O overestimates or underestimates caused by miscalibration and data overfitting. The plagioclase-liquid hygrometer from this study has been applied to trachyandesitic (latitic) and trachytic products erupted over the last 1000 years at the La Fossa cone of Vulcano Island (Aeolian Islands, Southern Italy). Results from calculations indicate that the concentration of H2O in the latitic and trachytic melts is comprised between ~2.5 and ~3.5 wt. %. These values are in good agreement with data from melt inclusions and, overall, testify to low-pressure, open-system differentiation of trachytic magmas under strong degassing conditions
2019
hygrometer; La fossa cone; plagioclase; trachyte; Vulcano
01 Pubblicazione su rivista::01a Articolo in rivista
A new plagioclase-liquid hygrometer specific to trachytic systems / Masotta, M.; Mollo, S.. - In: MINERALS. - ISSN 2075-163X. - 9:6(2019). [10.3390/min9060375]
File allegati a questo prodotto
File Dimensione Formato  
Masotta_A new_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1329474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact