Cystic fibrosis (CF) is an inherited disease that is characterised by susceptibility to bacterial infections and chronic lung inflammation. Recently, it was suggested that macrophages contribute to impaired host defence and excessive inflammatory responses in CF. Indeed, dysfunction attributed to CF macrophages includes decreased bacterial killing and exaggerated inflammatory responses. However, the mechanisms behind such defects have only been partially defined. MicroRNAs (miRNAs) have emerged as key regulators of several macrophage functions, including their activation, differentiation and polarisation. The goal of this study was to investigate whether miRNA dysregulation underlies the functional abnormalities of CF macrophages. MiRNA profiling of macrophages was performed, with 22 miRNAs identified as differentially expressed between CF and non-CF individuals. Among these, miR-146a was associated with significant enrichment of validated target genes involved in responses to microorganisms and inflammation. As miR-146a dysregulation has been reported in several human inflammatory diseases, we analysed the impact of increased miR-146a expression on inflammatory responses of CF macrophages. These data show that inhibition of miR-146a in lipopolysaccharide-stimulated CF macrophages results in increased interleukin-6 production, which suggests that miR-146a overexpression in CF is functional, to restrict inflammatory responses.

MiR-146a is over-expressed and controls IL-6 production in cystic fibrosis macrophages / Luly, FRANCESCO RENATO; Leveque, M.; Licursi, V.; Cimino, G.; Martin-Chouly, C.; Theret, N.; Negri, R.; Cavinato, L.; Ascenzioni, F.; Del Porto, P.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 9:1(2019). [10.1038/s41598-019-52770-w]

MiR-146a is over-expressed and controls IL-6 production in cystic fibrosis macrophages

LULY, FRANCESCO RENATO;Leveque M.;Licursi V.;Negri R.;Cavinato L.;Ascenzioni F.;Del Porto P.
2019

Abstract

Cystic fibrosis (CF) is an inherited disease that is characterised by susceptibility to bacterial infections and chronic lung inflammation. Recently, it was suggested that macrophages contribute to impaired host defence and excessive inflammatory responses in CF. Indeed, dysfunction attributed to CF macrophages includes decreased bacterial killing and exaggerated inflammatory responses. However, the mechanisms behind such defects have only been partially defined. MicroRNAs (miRNAs) have emerged as key regulators of several macrophage functions, including their activation, differentiation and polarisation. The goal of this study was to investigate whether miRNA dysregulation underlies the functional abnormalities of CF macrophages. MiRNA profiling of macrophages was performed, with 22 miRNAs identified as differentially expressed between CF and non-CF individuals. Among these, miR-146a was associated with significant enrichment of validated target genes involved in responses to microorganisms and inflammation. As miR-146a dysregulation has been reported in several human inflammatory diseases, we analysed the impact of increased miR-146a expression on inflammatory responses of CF macrophages. These data show that inhibition of miR-146a in lipopolysaccharide-stimulated CF macrophages results in increased interleukin-6 production, which suggests that miR-146a overexpression in CF is functional, to restrict inflammatory responses.
2019
Cystic fibrosis; macrophages; microRNAs
01 Pubblicazione su rivista::01a Articolo in rivista
MiR-146a is over-expressed and controls IL-6 production in cystic fibrosis macrophages / Luly, FRANCESCO RENATO; Leveque, M.; Licursi, V.; Cimino, G.; Martin-Chouly, C.; Theret, N.; Negri, R.; Cavinato, L.; Ascenzioni, F.; Del Porto, P.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 9:1(2019). [10.1038/s41598-019-52770-w]
File allegati a questo prodotto
File Dimensione Formato  
Luly_MiR146a_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1329470
Citazioni
  • ???jsp.display-item.citation.pmc??? 24
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 33
social impact