The problem of giving an explicit closed form for the integration of a particular class of time varying dynamics and its relationship with the integration under constant inputs is addressed. As a consequence, the possibility of the computation of a continuous control law starting from a piecewise continuous control designed on the basis of the sampled equivalent dynamics is shown. Simulations results validate the results and the proposed solutions.

Control of nonlinear driftless dynamics: Continuous solutions from discrete time design / Di Giamberardino, P.. - 2:(2001), pp. 1731-1736. (Intervento presentato al convegno 40th IEEE Conference on Decision and Control (CDC) tenutosi a Orlando, FL; United States) [10.1109/CDC.2001.981152].

Control of nonlinear driftless dynamics: Continuous solutions from discrete time design

Di Giamberardino P.
2001

Abstract

The problem of giving an explicit closed form for the integration of a particular class of time varying dynamics and its relationship with the integration under constant inputs is addressed. As a consequence, the possibility of the computation of a continuous control law starting from a piecewise continuous control designed on the basis of the sampled equivalent dynamics is shown. Simulations results validate the results and the proposed solutions.
2001
40th IEEE Conference on Decision and Control (CDC)
Digital control systems; sampled dynamics; nonholonomic systems
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Control of nonlinear driftless dynamics: Continuous solutions from discrete time design / Di Giamberardino, P.. - 2:(2001), pp. 1731-1736. (Intervento presentato al convegno 40th IEEE Conference on Decision and Control (CDC) tenutosi a Orlando, FL; United States) [10.1109/CDC.2001.981152].
File allegati a questo prodotto
File Dimensione Formato  
DiGiamberardino_Control_2001.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 332.26 kB
Formato Adobe PDF
332.26 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1329240
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact