The paper proposes a new approach to heart activity diagnosis based on Gram polynomials and probabilistic neural networks (PNN). Heart disease recognition is based on the analysis of phonocardiogram (PCG) digital sequences. The PNN provides a powerful tool for proper classification of the input data set. The novelty of the proposed approach lies in a powerful feature extraction based on Gram polynomials and the Fourier transform. The proposed system presents good performance obtaining overall sensitivity of 93%, specificity of 91% and accuracy of 94%, using a public database of over 3000 heart beat sound recordings, classified as normal and abnormal heart sounds. Thus, it can be concluded that Gram polynomials and PNN prove to be a very efficient technique using the PCG signal for characterizing heart diseases.

Automatic heart activity diagnosis based on Gram polynomials and probabilistic neural networks / Beritelli, Francesco; Capizzi, Giacomo; LO SCIUTO, Grazia; Napoli, Christian; Scaglione, Francesco. - In: BIOMEDICAL ENGINEERING LETTERS. - ISSN 2093-9868. - 8:1(2018), pp. 77-85. [10.1007/s13534-017-0046-z]

Automatic heart activity diagnosis based on Gram polynomials and probabilistic neural networks

NAPOLI, CHRISTIAN;
2018

Abstract

The paper proposes a new approach to heart activity diagnosis based on Gram polynomials and probabilistic neural networks (PNN). Heart disease recognition is based on the analysis of phonocardiogram (PCG) digital sequences. The PNN provides a powerful tool for proper classification of the input data set. The novelty of the proposed approach lies in a powerful feature extraction based on Gram polynomials and the Fourier transform. The proposed system presents good performance obtaining overall sensitivity of 93%, specificity of 91% and accuracy of 94%, using a public database of over 3000 heart beat sound recordings, classified as normal and abnormal heart sounds. Thus, it can be concluded that Gram polynomials and PNN prove to be a very efficient technique using the PCG signal for characterizing heart diseases.
2018
Heart sounds; Phonocardiogram; Cardiac signal analysis; Gram polynomials; Probabilistic neural network
01 Pubblicazione su rivista::01a Articolo in rivista
Automatic heart activity diagnosis based on Gram polynomials and probabilistic neural networks / Beritelli, Francesco; Capizzi, Giacomo; LO SCIUTO, Grazia; Napoli, Christian; Scaglione, Francesco. - In: BIOMEDICAL ENGINEERING LETTERS. - ISSN 2093-9868. - 8:1(2018), pp. 77-85. [10.1007/s13534-017-0046-z]
File allegati a questo prodotto
File Dimensione Formato  
Beritelli_Automatic-heart-activity_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1328618
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 38
social impact