The design process of photovoltaic (PV) modules can be greatly enhanced by using advanced and accurate models in order to predict accurately their electrical output behavior. The main aim of this paper is to investigate the application of an advanced neural network based model of a module to improve the accuracy of the predicted output I–V and P–V curves and to keep in account the change of all the parameters at different operating conditions. Radial basis function neural networks (RBFNN) are here utilized to predict the output characteristic of a commercial PV module, by reading only the data of solar irradiation and temperature. A lot of available experimental data were used for the training of the RBFNN, and a backpropagation algorithm was employed. Simulation and experimental validation is reported.

A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module / Bonanno, F; Capizzi, G; Graditi, G.; Napoli, C; Tina, G. M.. - In: APPLIED ENERGY. - ISSN 0306-2619. - 97:(2012), pp. 956-961. [10.1016/j.apenergy.2011.12.085]

A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module

Napoli C;
2012

Abstract

The design process of photovoltaic (PV) modules can be greatly enhanced by using advanced and accurate models in order to predict accurately their electrical output behavior. The main aim of this paper is to investigate the application of an advanced neural network based model of a module to improve the accuracy of the predicted output I–V and P–V curves and to keep in account the change of all the parameters at different operating conditions. Radial basis function neural networks (RBFNN) are here utilized to predict the output characteristic of a commercial PV module, by reading only the data of solar irradiation and temperature. A lot of available experimental data were used for the training of the RBFNN, and a backpropagation algorithm was employed. Simulation and experimental validation is reported.
2012
Solar energy; Solar cell; Photovoltaic modules
01 Pubblicazione su rivista::01a Articolo in rivista
A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module / Bonanno, F; Capizzi, G; Graditi, G.; Napoli, C; Tina, G. M.. - In: APPLIED ENERGY. - ISSN 0306-2619. - 97:(2012), pp. 956-961. [10.1016/j.apenergy.2011.12.085]
File allegati a questo prodotto
File Dimensione Formato  
Bonanno_A-radial-basis_2012.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Contatta l'autore
VE_2012_11573-1328615.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1328615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 145
  • ???jsp.display-item.citation.isi??? 125
social impact