In this paper different approaches aimed at investigating the dynamic behaviour of circular tunnels in the transverse direction are presented. The analysed cases refer to a shallow tunnel built in an ideal soft clayey deposit. The adopted approaches include one-dimensional (1D) numerical analyses performed modelling the soil as a single phase visco-elastic non-linear medium, the results of which are then used to evaluate the input data for selected analytical solutions proposed in the literature (uncoupled approach), and 2D fully coupled Finite Element simulations adopting visco-elastic and visco-elasto-plastic constitutive assumptions for the soil and the lining (coupled approach). The results are proposed in terms of increments of seismic-induced loads in the transverse direction of the tunnel lining. The different constitutive hypotheses adopted in the coupled numerical approach prove to play a significant role on the results. In particular, the plasticity-based analyses indicate that a seismic event can produce a substantial modification of the loads acting in the lining, leading to permanent increments of both hoop force and bending moment.
Analysis of tunnel behaviour under seismic loads by means of simple and advanced numerical approaches / Amorosi, A.; Boldini, D.; Palmisano, F.. - (2010). (Intervento presentato al convegno Fifth international conference on recent advances in geotechnical earthquake engineering and soil dynamics tenutosi a San Diego, CA; USA).
Analysis of tunnel behaviour under seismic loads by means of simple and advanced numerical approaches
AMOROSI A.;BOLDINI D.;
2010
Abstract
In this paper different approaches aimed at investigating the dynamic behaviour of circular tunnels in the transverse direction are presented. The analysed cases refer to a shallow tunnel built in an ideal soft clayey deposit. The adopted approaches include one-dimensional (1D) numerical analyses performed modelling the soil as a single phase visco-elastic non-linear medium, the results of which are then used to evaluate the input data for selected analytical solutions proposed in the literature (uncoupled approach), and 2D fully coupled Finite Element simulations adopting visco-elastic and visco-elasto-plastic constitutive assumptions for the soil and the lining (coupled approach). The results are proposed in terms of increments of seismic-induced loads in the transverse direction of the tunnel lining. The different constitutive hypotheses adopted in the coupled numerical approach prove to play a significant role on the results. In particular, the plasticity-based analyses indicate that a seismic event can produce a substantial modification of the loads acting in the lining, leading to permanent increments of both hoop force and bending moment.File | Dimensione | Formato | |
---|---|---|---|
Amorosi_Analysis-tunnel-behaviour_2010.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
554.52 kB
Formato
Adobe PDF
|
554.52 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.