Hybrid receptors composed of an insulin alpha beta-hemireceptor and a type 1 IGF alpha beta-hemireceptor are formed in tissues expressing both molecules. We recently reported an increased hybrid receptor expression in skeletal muscle of type 2 diabetic patients that is inversely correlated with in vivo insulin sensitivity. It is unclear whether these changes were due to primary abnormalities or to secondary derangements acting in vivo, such as hyperglycemia. To address this, we determined abundance of hybrids in skeletal muscle from three groups of rats: controls, diabetic (90% pancreatectomy), and diabetic treated with phlorizin to normalize plasma glucose levels. We found that the abundance of hybrid receptors was higher in diabetic rats compared with control and phlorizin-treated diabetic rats (percentage of I-125-insulin bound versus total added radioactivity [B/T] 1.8 +/- 0.11, 0.4 +/- 0.01 and 0.32 +/- 0.04, respectively; P < 0.0001). Fasting plasma glucose levels were positively correlated with hybrids abundance (r = 0.77, P < 0.002). Hybrid receptor protein content, assessed by immunoblotting, was 2.4-fold higher in diabetic rats as compared with control and phlorizin-treated diabetic rats. Because it has been shown that some of the regulatory effects of glucose may be mediated by the glucosamine pathway, we subsequently determined the effect of an in vivo glucosamine infusion on hybrid receptor formation. We found that abundance of hybrids was significantly higher in muscle from glucosamine-treated rats compared with control rats (B/T = 0.17 +/- 0.02 and 0.11 +/- 0.01, respectively; P < 0.009). Quantitation of hybrid content by immunoblotting revealed that their abundance was 1.9-fold higher in glucosamine-treated rats. The results demonstrate that I) elevated glucose levels in diabetic rats are associated with increased expression of hybrid receptors in muscle, 2) correction of hyperglycemia with phlorizin completely reverses increased expression of hybrids, and 3) glucosamine infused into control rats mimics the effects of hyperglycemia on hybrid receptor formation. Thus, the results support the hypothesis that glucose acting, at least in part, through the glucosamine pathway may play an important role in regulating hybrid receptor assembly in vivo.

Evidence for glucose/hexosamine in vivo regulation of insulin/IGF-I hybrid receptor assembly / Federici, M.; Giaccari, A.; Hribal, M. L.; Giovannone, B.; Lauro, D.; Morviducci, L.; Pastore, L.; Tamburrano, G.; Lauro, R.; Sesti, G.. - In: DIABETES. - ISSN 0012-1797. - 48:12(1999), pp. 2277-2285. [10.2337/diabetes.48.12.2277]

Evidence for glucose/hexosamine in vivo regulation of insulin/IGF-I hybrid receptor assembly

Sesti G.
Ultimo
Writing – Review & Editing
1999

Abstract

Hybrid receptors composed of an insulin alpha beta-hemireceptor and a type 1 IGF alpha beta-hemireceptor are formed in tissues expressing both molecules. We recently reported an increased hybrid receptor expression in skeletal muscle of type 2 diabetic patients that is inversely correlated with in vivo insulin sensitivity. It is unclear whether these changes were due to primary abnormalities or to secondary derangements acting in vivo, such as hyperglycemia. To address this, we determined abundance of hybrids in skeletal muscle from three groups of rats: controls, diabetic (90% pancreatectomy), and diabetic treated with phlorizin to normalize plasma glucose levels. We found that the abundance of hybrid receptors was higher in diabetic rats compared with control and phlorizin-treated diabetic rats (percentage of I-125-insulin bound versus total added radioactivity [B/T] 1.8 +/- 0.11, 0.4 +/- 0.01 and 0.32 +/- 0.04, respectively; P < 0.0001). Fasting plasma glucose levels were positively correlated with hybrids abundance (r = 0.77, P < 0.002). Hybrid receptor protein content, assessed by immunoblotting, was 2.4-fold higher in diabetic rats as compared with control and phlorizin-treated diabetic rats. Because it has been shown that some of the regulatory effects of glucose may be mediated by the glucosamine pathway, we subsequently determined the effect of an in vivo glucosamine infusion on hybrid receptor formation. We found that abundance of hybrids was significantly higher in muscle from glucosamine-treated rats compared with control rats (B/T = 0.17 +/- 0.02 and 0.11 +/- 0.01, respectively; P < 0.009). Quantitation of hybrid content by immunoblotting revealed that their abundance was 1.9-fold higher in glucosamine-treated rats. The results demonstrate that I) elevated glucose levels in diabetic rats are associated with increased expression of hybrid receptors in muscle, 2) correction of hyperglycemia with phlorizin completely reverses increased expression of hybrids, and 3) glucosamine infused into control rats mimics the effects of hyperglycemia on hybrid receptor formation. Thus, the results support the hypothesis that glucose acting, at least in part, through the glucosamine pathway may play an important role in regulating hybrid receptor assembly in vivo.
1999
Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Glucosamine; Insulin; Insulin-Like Growth Factor I; Kinetics; Male; Muscle, Skeletal; Phlorhizin; Protein Multimerization; Rats; Rats, Sprague-Dawley; Receptor, IGF Type 1; Receptor, Insulin; Reference Values
01 Pubblicazione su rivista::01a Articolo in rivista
Evidence for glucose/hexosamine in vivo regulation of insulin/IGF-I hybrid receptor assembly / Federici, M.; Giaccari, A.; Hribal, M. L.; Giovannone, B.; Lauro, D.; Morviducci, L.; Pastore, L.; Tamburrano, G.; Lauro, R.; Sesti, G.. - In: DIABETES. - ISSN 0012-1797. - 48:12(1999), pp. 2277-2285. [10.2337/diabetes.48.12.2277]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1321823
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 25
social impact