By work of Looijenga and others, one understands the relationship between Geometric Invariant Theory (GIT) and Baily-Borel compactifications for the moduli spaces of degree-2 K 3 surfaces, cubic fourfolds, and a few other related examples. The similar-looking cases of degree-4 K 3 surfaces and double Eisenbud-Popescu-Walter (EPW) sextics turn out to be much more complicated for arithmetic reasons. In this paper, we refine work of Looijenga in order to handle these cases. Specifically, in analogy with the so-called Hassett-Keel program for the moduli space of curves, we study the variation of log canonical models for locally symmetric varieties of Type IV associated to D-lattices. In particular, for the 19-dimensional case, we conjecturally obtain a continuous one-parameter interpolation between the GIT and Baily-Borel compactifications for the moduli of degree-4 K 3 surfaces. The analogous 18-dimensional case, which corresponds to hyperelliptic degree-4 K 3 surfaces, can be verified by means of Variation of Geometric Invariant Theory (VGIT) quotients.

Birational geometry of the moduli space of quartic  surfaces / Laza, Radu-Mihai; O’Grady, Kieran. - In: COMPOSITIO MATHEMATICA. - ISSN 0010-437X. - 155:9(2019), pp. 1655-1710. [10.1112/S0010437X19007516]

Birational geometry of the moduli space of quartic  surfaces

O’Grady, Kieran
2019

Abstract

By work of Looijenga and others, one understands the relationship between Geometric Invariant Theory (GIT) and Baily-Borel compactifications for the moduli spaces of degree-2 K 3 surfaces, cubic fourfolds, and a few other related examples. The similar-looking cases of degree-4 K 3 surfaces and double Eisenbud-Popescu-Walter (EPW) sextics turn out to be much more complicated for arithmetic reasons. In this paper, we refine work of Looijenga in order to handle these cases. Specifically, in analogy with the so-called Hassett-Keel program for the moduli space of curves, we study the variation of log canonical models for locally symmetric varieties of Type IV associated to D-lattices. In particular, for the 19-dimensional case, we conjecturally obtain a continuous one-parameter interpolation between the GIT and Baily-Borel compactifications for the moduli of degree-4 K 3 surfaces. The analogous 18-dimensional case, which corresponds to hyperelliptic degree-4 K 3 surfaces, can be verified by means of Variation of Geometric Invariant Theory (VGIT) quotients.
2019
moduli, periods, K3 surfaces
01 Pubblicazione su rivista::01a Articolo in rivista
Birational geometry of the moduli space of quartic  surfaces / Laza, Radu-Mihai; O’Grady, Kieran. - In: COMPOSITIO MATHEMATICA. - ISSN 0010-437X. - 155:9(2019), pp. 1655-1710. [10.1112/S0010437X19007516]
File allegati a questo prodotto
File Dimensione Formato  
O'Grady_Birational-geometry_2019.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 987.03 kB
Formato Adobe PDF
987.03 kB Adobe PDF   Contatta l'autore
O'Grady_preprint_Birational-geometry_2019.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 753.19 kB
Formato Unknown
753.19 kB Unknown

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1321604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact