In a socio-technical work domain, humans, device interfaces and artefacts all affect transformations of information flow. Such transformations, which may involve a change of auditory to visual information & vice versa or alter semantic approximations into spatial proximities from instruments readings, are generally not restricted to solely human cognition. This paper applies a joint cognitive system approach to explore a socio-technical system. A systems ergonomics perspective is achieved by applying a multi-layered division to transformations of information between, and within, human and technical agents. The approach uses the Functional Resonance Analysis Method (FRAM), but abandons the traditional boundary between medium and agent in favour of accepting aircraft systems and artefacts as agents, with their own functional properties and relationships. The joint cognitive system perspective in developing the FRAM model allows an understanding of the effects of task and information propagation, and eventual distributed criticalities, taking advantage of the functional properties of the system, as described in a case study related to the cockpit environment of a DC-9 aircraft. Practitioner Summary: This research presents the application of one systemic method to understand work systems and performance variability in relation to the transformation of information within a flight deck for a specific phase of flight. By using a joint cognitive systems approach both retrospective and prospective investigation of cockpit challenges will be better understood.

A socio-technical analysis of functional properties in a joint cognitive system: a case study in an aircraft cockpit / Adriaensen, A.; Patriarca, R.; Smoker, A.; Bergstrom, J.. - In: ERGONOMICS. - ISSN 0014-0139. - 62:12(2019), pp. 1598-1616. [10.1080/00140139.2019.1661527]

A socio-technical analysis of functional properties in a joint cognitive system: a case study in an aircraft cockpit

Patriarca R.
;
2019

Abstract

In a socio-technical work domain, humans, device interfaces and artefacts all affect transformations of information flow. Such transformations, which may involve a change of auditory to visual information & vice versa or alter semantic approximations into spatial proximities from instruments readings, are generally not restricted to solely human cognition. This paper applies a joint cognitive system approach to explore a socio-technical system. A systems ergonomics perspective is achieved by applying a multi-layered division to transformations of information between, and within, human and technical agents. The approach uses the Functional Resonance Analysis Method (FRAM), but abandons the traditional boundary between medium and agent in favour of accepting aircraft systems and artefacts as agents, with their own functional properties and relationships. The joint cognitive system perspective in developing the FRAM model allows an understanding of the effects of task and information propagation, and eventual distributed criticalities, taking advantage of the functional properties of the system, as described in a case study related to the cockpit environment of a DC-9 aircraft. Practitioner Summary: This research presents the application of one systemic method to understand work systems and performance variability in relation to the transformation of information within a flight deck for a specific phase of flight. By using a joint cognitive systems approach both retrospective and prospective investigation of cockpit challenges will be better understood.
2019
abstraction hierarchy; complex systems; FRAM; joint cognitive system; systems ergonomics
01 Pubblicazione su rivista::01a Articolo in rivista
A socio-technical analysis of functional properties in a joint cognitive system: a case study in an aircraft cockpit / Adriaensen, A.; Patriarca, R.; Smoker, A.; Bergstrom, J.. - In: ERGONOMICS. - ISSN 0014-0139. - 62:12(2019), pp. 1598-1616. [10.1080/00140139.2019.1661527]
File allegati a questo prodotto
File Dimensione Formato  
Adriaensen_A-socio-technical_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.68 MB
Formato Adobe PDF
2.68 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1321530
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 31
social impact