Constrained approaches to maximum likelihood estimation in the context of finite mixtures of normals have been presented in the literature. A fully data-dependent soft constrained method for maximum likelihood estimation of clusterwise linear regression is proposed, which extends previous work in equivariant data-driven estimation of finite mixtures of normals. The method imposes soft scale bounds based on the homoscedastic variance and a cross-validated tuning parameter c. In our simulation studies and real data examples we show that the selected cwill produce an output model with clusterwise linear regressions and clustering as a most-suited-to-the-data solution in between the homoscedastic and the heteroscedastic models.

Clusterwise linear regression modeling with soft scale constraints / Di Mari, R; Rocci, R; Gattone, Sa. - In: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING. - ISSN 0888-613X. - (2017), pp. 160-178. [10.1016/j.ijar.2017.09.006]

Clusterwise linear regression modeling with soft scale constraints

Rocci R;
2017

Abstract

Constrained approaches to maximum likelihood estimation in the context of finite mixtures of normals have been presented in the literature. A fully data-dependent soft constrained method for maximum likelihood estimation of clusterwise linear regression is proposed, which extends previous work in equivariant data-driven estimation of finite mixtures of normals. The method imposes soft scale bounds based on the homoscedastic variance and a cross-validated tuning parameter c. In our simulation studies and real data examples we show that the selected cwill produce an output model with clusterwise linear regressions and clustering as a most-suited-to-the-data solution in between the homoscedastic and the heteroscedastic models.
2017
clusterwise linear regression; adaptive constraints, regression equivariance; plausible bounds; soft estimators; constrained EM algorithm
01 Pubblicazione su rivista::01a Articolo in rivista
Clusterwise linear regression modeling with soft scale constraints / Di Mari, R; Rocci, R; Gattone, Sa. - In: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING. - ISSN 0888-613X. - (2017), pp. 160-178. [10.1016/j.ijar.2017.09.006]
File allegati a questo prodotto
File Dimensione Formato  
DiMari_Clusterwise-linear-regression_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 730.08 kB
Formato Adobe PDF
730.08 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1317612
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact