This paper describes an EM algorithm for maximum likelihood estimation in generalized linear models (GLMs) with continuous measurement error in the explanatory variables. The algorithm is an adaptation of that for nonparametric maximum likelihood (NPML) estimation in overdispersed GLMs described in Aitkin (Statistics and Computing 6: 251–262, 1996). The measurement error distribution can be of any specified form, though the implementation described assumes normal measurement error. Neither the reliability nor the distribution of the true score of the variables with measurement error has to be known, nor are instrumental variables or replication required. Standard errors can be obtained by omitting individual variables from the model, as in Aitkin (1996). Several examples are given, of normal and Bernoulli response variables.

A general maximum likelihood analysis of measurement error in generalized linear models / M., Aitkin; Rocci, R. - In: STATISTICS AND COMPUTING. - ISSN 0960-3174. - 12:(2002), pp. 163-174. [10.1023/A:1014838703623]

A general maximum likelihood analysis of measurement error in generalized linear models

ROCCI R
2002

Abstract

This paper describes an EM algorithm for maximum likelihood estimation in generalized linear models (GLMs) with continuous measurement error in the explanatory variables. The algorithm is an adaptation of that for nonparametric maximum likelihood (NPML) estimation in overdispersed GLMs described in Aitkin (Statistics and Computing 6: 251–262, 1996). The measurement error distribution can be of any specified form, though the implementation described assumes normal measurement error. Neither the reliability nor the distribution of the true score of the variables with measurement error has to be known, nor are instrumental variables or replication required. Standard errors can be obtained by omitting individual variables from the model, as in Aitkin (1996). Several examples are given, of normal and Bernoulli response variables.
2002
measurement error; random effects GLM; EM algorithm; mixture model; Gaussian quadrature; nonparametric maximum likelihood
01 Pubblicazione su rivista::01a Articolo in rivista
A general maximum likelihood analysis of measurement error in generalized linear models / M., Aitkin; Rocci, R. - In: STATISTICS AND COMPUTING. - ISSN 0960-3174. - 12:(2002), pp. 163-174. [10.1023/A:1014838703623]
File allegati a questo prodotto
File Dimensione Formato  
Aitkin_general-maximum-likelihood_2002-pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 124.81 kB
Formato Unknown
124.81 kB Unknown   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1317580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact