In this paper we give an alternative view of the euclidean scalar product between symmetric positive semidefinite matrices, characterizing a matrix on the grounds of its spectral decomposition. Following this approach we reconsider the "compromise matrix" and "mean matrix" methods tacking into account the rank of the "compromise" or "mean" matrix.
Scalar product and synthesis of s-matrices / Rocci, R. - In: STATISTICA APPLICATA. - ISSN 1125-1964. - 4:(1992), pp. 693-699.
Scalar product and synthesis of s-matrices
ROCCI R
1992
Abstract
In this paper we give an alternative view of the euclidean scalar product between symmetric positive semidefinite matrices, characterizing a matrix on the grounds of its spectral decomposition. Following this approach we reconsider the "compromise matrix" and "mean matrix" methods tacking into account the rank of the "compromise" or "mean" matrix.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Rocci_Scalar-product_1992.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
208.49 kB
Formato
Adobe PDF
|
208.49 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.