Concerning Nearly Zero Energy Buildings, it is important to guarantee energy efficiency, thermal comfort and indoor environmental quality, while keeping construction and operational costs low. In this framework, this paper explores the efficacy of applying different scenarios, for reducing construction costs of new nearly zero energy multi-family houses in a life cycle perspective. Conversely to the standard cost-optimal approach, a real Italian case study building was chosen. Alternative and unconventional combinations of solutions for envelope and technical systems were adopted. Calculations were performed in two Italian cities (Rome and Turin). Three types of analysis were developed thermal comfort, energy performance and financial calculation. Results of the thermal analysis show that the installation of active cooling to prevent summer overheating can be avoided by applying low-cost passive strategies. All the proposed low-cost scenarios (4 alternative scenarios in Rome and 5 in Turin)reached the highest grade of energy performance, with a reduction of the non-renewable primary energy consumption up to 46% compared to the base case in Rome and 18% in Turin. From the economic perspective, all the scenarios in the two climate zones allow both reductions in the construction costs, up to 26% in Rome and 15% in Turin, and a Net Present Value after 50 years up to 163 €/m2 in Rome and 158 €/m2 in Turin.

Assessment of construction cost reduction of nearly zero energy dwellings in a life cycle perspective / Zinz, i. M.; Mattoni, B.. - In: APPLIED ENERGY. - ISSN 0306-2619. - 251:(2019). [10.1016/j.apenergy.2019.113326]

Assessment of construction cost reduction of nearly zero energy dwellings in a life cycle perspective

Mattoni B.
2019

Abstract

Concerning Nearly Zero Energy Buildings, it is important to guarantee energy efficiency, thermal comfort and indoor environmental quality, while keeping construction and operational costs low. In this framework, this paper explores the efficacy of applying different scenarios, for reducing construction costs of new nearly zero energy multi-family houses in a life cycle perspective. Conversely to the standard cost-optimal approach, a real Italian case study building was chosen. Alternative and unconventional combinations of solutions for envelope and technical systems were adopted. Calculations were performed in two Italian cities (Rome and Turin). Three types of analysis were developed thermal comfort, energy performance and financial calculation. Results of the thermal analysis show that the installation of active cooling to prevent summer overheating can be avoided by applying low-cost passive strategies. All the proposed low-cost scenarios (4 alternative scenarios in Rome and 5 in Turin)reached the highest grade of energy performance, with a reduction of the non-renewable primary energy consumption up to 46% compared to the base case in Rome and 18% in Turin. From the economic perspective, all the scenarios in the two climate zones allow both reductions in the construction costs, up to 26% in Rome and 15% in Turin, and a Net Present Value after 50 years up to 163 €/m2 in Rome and 158 €/m2 in Turin.
building energy technologies; construction cost; life cycle cost; nearly zero energy buildings
01 Pubblicazione su rivista::01a Articolo in rivista
Assessment of construction cost reduction of nearly zero energy dwellings in a life cycle perspective / Zinz, i. M.; Mattoni, B.. - In: APPLIED ENERGY. - ISSN 0306-2619. - 251:(2019). [10.1016/j.apenergy.2019.113326]
File allegati a questo prodotto
File Dimensione Formato  
Zinzi_preprint_Assessment_2019.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.07 MB
Formato Adobe PDF
5.07 MB Adobe PDF Visualizza/Apri PDF
Zinzi_Assessment_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.32 MB
Formato Adobe PDF
3.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1311068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact