In this paper, the viscoelastic characterization of biosamples is addressed considering a measuring technique relying on the use of a MEMS techonology-based microgripper. A proper mechanical model is developed for the coupled nonlinear dynamics of the microsystem, composed of the measuring tool and the specimen to be analyzed. The Maxwell liquid drop model and the generalized Maxwell-Wiechert model are considered for the sample, and the identification of the viscoelastic parameters is performed by implementing a genetic algorithm.
A genetic algorithm-based method for the mechanical characterization of biosamples using a MEMS microgripper: numerical simulations / Verotti, M.; Di Giamberardino, P.; Belfiore, N. P.; Giannini, O.. - In: JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS. - ISSN 1751-6161. - 96:(2019), pp. 88-95. [10.1016/j.jmbbm.2019.04.023]
A genetic algorithm-based method for the mechanical characterization of biosamples using a MEMS microgripper: numerical simulations
Verotti M.Primo
;Di Giamberardino P.Secondo
;Belfiore N. P.Penultimo
;Giannini O.Ultimo
2019
Abstract
In this paper, the viscoelastic characterization of biosamples is addressed considering a measuring technique relying on the use of a MEMS techonology-based microgripper. A proper mechanical model is developed for the coupled nonlinear dynamics of the microsystem, composed of the measuring tool and the specimen to be analyzed. The Maxwell liquid drop model and the generalized Maxwell-Wiechert model are considered for the sample, and the identification of the viscoelastic parameters is performed by implementing a genetic algorithm.File | Dimensione | Formato | |
---|---|---|---|
Verotti_A-genetic-algorithm-based_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.75 MB
Formato
Adobe PDF
|
1.75 MB | Adobe PDF | Contatta l'autore |
Verotti_preprint_A-genetic-algorithm-based_2019.pdf
accesso aperto
Note: https://www.sciencedirect.com/science/article/abs/pii/S1751616118311810
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
837.64 kB
Formato
Adobe PDF
|
837.64 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.