Recent studies demonstrated that methamphetamine (METH) produces intracellular bodies which are reminiscent of those occurring during degenerative disorders. In vivo studies demonstrate the occurrence of these morphological alterations both in the dopamine (DA) neurons of the substantia nigra and striatal cells. These consist of neuronal bodies staining for a variety of antigens belonging to the ubiquitin-proteasome pathway. The formation of these intracellular bodies both in the substantia nigra and PC12 cells depends on the presence of endogenous DA. In the present study, we analyze the mechanisms which lead to METH-induced intracellular bodies within non-dopaminergic striatal neurons. We found that METH is no longer able to produce inclusions in vivo, in striatal cells, when striatal DA is lost. Similarly, in vitro, in primary striatal cell cultures which do not possess DA, METH administration does not produce inclusions. On the other hand, administration of DA to striatal cell cultures produces neuronal inclusions and cell death, which are both related to the inhibition of the ubiquitin-proteasome system and activation of specific-DA receptors. In line with this, we produced subcellular alterations by administering dopamine agonists. © 2007 The Authors.

Mechanisms involved in the formation of dopamine-induced intracellular bodies within striatal neurons / Gloria, Lazzeri; Paola, Lenzi; Carla L., Busceti; Michela, Ferrucci; Alessandra, Falleni; Bruno, Valeria Maria Gloria; Antonio, Paparelli; Francesco, Fornai. - In: JOURNAL OF NEUROCHEMISTRY. - ISSN 0022-3042. - STAMPA. - 101:5(2007), pp. 1414-1427. [10.1111/j.1471-4159.2006.04429.x]

Mechanisms involved in the formation of dopamine-induced intracellular bodies within striatal neurons

BRUNO, Valeria Maria Gloria;
2007

Abstract

Recent studies demonstrated that methamphetamine (METH) produces intracellular bodies which are reminiscent of those occurring during degenerative disorders. In vivo studies demonstrate the occurrence of these morphological alterations both in the dopamine (DA) neurons of the substantia nigra and striatal cells. These consist of neuronal bodies staining for a variety of antigens belonging to the ubiquitin-proteasome pathway. The formation of these intracellular bodies both in the substantia nigra and PC12 cells depends on the presence of endogenous DA. In the present study, we analyze the mechanisms which lead to METH-induced intracellular bodies within non-dopaminergic striatal neurons. We found that METH is no longer able to produce inclusions in vivo, in striatal cells, when striatal DA is lost. Similarly, in vitro, in primary striatal cell cultures which do not possess DA, METH administration does not produce inclusions. On the other hand, administration of DA to striatal cell cultures produces neuronal inclusions and cell death, which are both related to the inhibition of the ubiquitin-proteasome system and activation of specific-DA receptors. In line with this, we produced subcellular alterations by administering dopamine agonists. © 2007 The Authors.
2007
dopamine receptors; electron microscopy; methamphetamine; striatal inclusions; ubiquitin; ubiquitin-proteasome system
01 Pubblicazione su rivista::01a Articolo in rivista
Mechanisms involved in the formation of dopamine-induced intracellular bodies within striatal neurons / Gloria, Lazzeri; Paola, Lenzi; Carla L., Busceti; Michela, Ferrucci; Alessandra, Falleni; Bruno, Valeria Maria Gloria; Antonio, Paparelli; Francesco, Fornai. - In: JOURNAL OF NEUROCHEMISTRY. - ISSN 0022-3042. - STAMPA. - 101:5(2007), pp. 1414-1427. [10.1111/j.1471-4159.2006.04429.x]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/130754
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 24
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 55
social impact