Traveling waves of permanent form with compact support are possible in several nonlinear partial nonlinear differential equations and this, mainly, along two pathways: A pure nonlinearity stronger than quadratic in the higher order gradient terms describing the mathematical model of the phenomena or a special inhomogeneity in quadratic gradient terms of the model. In the present note we perform a rigorous analysis of the mathematical structure of compactification via a generalization of a classical theorem by Weierstrass. Our mathematical analysis allows to explain in a rigorous and complete way the presence of compact structures in nonlinear partial differential equations 1 + 1 dimensions.

Compact structures as true non-linear phenomena / Cirillo, Emilio N. M.; Saccomandi, Giuseppe; Sciarra, Giulio. - In: MATHEMATICS IN ENGINEERING. - ISSN 2640-3501. - (2019), pp. 434-446.

Compact structures as true non-linear phenomena

Emilio N. M. Cirillo;Giulio Sciarra
2019

Abstract

Traveling waves of permanent form with compact support are possible in several nonlinear partial nonlinear differential equations and this, mainly, along two pathways: A pure nonlinearity stronger than quadratic in the higher order gradient terms describing the mathematical model of the phenomena or a special inhomogeneity in quadratic gradient terms of the model. In the present note we perform a rigorous analysis of the mathematical structure of compactification via a generalization of a classical theorem by Weierstrass. Our mathematical analysis allows to explain in a rigorous and complete way the presence of compact structures in nonlinear partial differential equations 1 + 1 dimensions.
2019
Compacton; wave propagation; Weirestrass construction' phase space
01 Pubblicazione su rivista::01a Articolo in rivista
Compact structures as true non-linear phenomena / Cirillo, Emilio N. M.; Saccomandi, Giuseppe; Sciarra, Giulio. - In: MATHEMATICS IN ENGINEERING. - ISSN 2640-3501. - (2019), pp. 434-446.
File allegati a questo prodotto
File Dimensione Formato  
css_aims-comp.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1307066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact