In this paper we study a class of nonlinear parabolic problems including the p-Laplacian equation. The initial datum and the forcing term are allowed to be summable functions or Radon measures. We prove that these equations have surprising regularizing properties. Moreover, we study the behavior in time of these solutions proving that decay estimates hold true also for non zero reaction terms. Finally, we study the autonomous case.

Asymptotic behavior and regularity properties of strongly nonlinear parabolic equations / PORZIO, Maria Michaela. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - (2019). [10.1007/s10231-019-00845-w]

Asymptotic behavior and regularity properties of strongly nonlinear parabolic equations

Maria Michaela Porzio
2019

Abstract

In this paper we study a class of nonlinear parabolic problems including the p-Laplacian equation. The initial datum and the forcing term are allowed to be summable functions or Radon measures. We prove that these equations have surprising regularizing properties. Moreover, we study the behavior in time of these solutions proving that decay estimates hold true also for non zero reaction terms. Finally, we study the autonomous case.
2019
decay estimates, asymptotic behavior, regularity of solutions, p-Laplacian equation, nonlinear degenerate parabolic equations, smoothing effect
01 Pubblicazione su rivista::01a Articolo in rivista
Asymptotic behavior and regularity properties of strongly nonlinear parabolic equations / PORZIO, Maria Michaela. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - (2019). [10.1007/s10231-019-00845-w]
File allegati a questo prodotto
File Dimensione Formato  
Porzio_Asymptotic-behavior_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 777.83 kB
Formato Adobe PDF
777.83 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1305560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact