In this paper we study a class of nonlinear parabolic problems including the p-Laplacian equation. The initial datum and the forcing term are allowed to be summable functions or Radon measures. We prove that these equations have surprising regularizing properties. Moreover, we study the behavior in time of these solutions proving that decay estimates hold true also for non zero reaction terms. Finally, we study the autonomous case.
Asymptotic behavior and regularity properties of strongly nonlinear parabolic equations / PORZIO, Maria Michaela. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - (2019). [10.1007/s10231-019-00845-w]
Asymptotic behavior and regularity properties of strongly nonlinear parabolic equations
Maria Michaela Porzio
2019
Abstract
In this paper we study a class of nonlinear parabolic problems including the p-Laplacian equation. The initial datum and the forcing term are allowed to be summable functions or Radon measures. We prove that these equations have surprising regularizing properties. Moreover, we study the behavior in time of these solutions proving that decay estimates hold true also for non zero reaction terms. Finally, we study the autonomous case.File | Dimensione | Formato | |
---|---|---|---|
Porzio_Asymptotic-behavior_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
777.83 kB
Formato
Adobe PDF
|
777.83 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.