Fuzzy clustering methods discover fuzzy partitions where observations can be softly assigned to more than one cluster. The package fclust is a toolbox for fuzzy clustering in the R programming language. It not only implements the widely used fuzzy k-means (FkM) algorithm, but also many FkM variants. Fuzzy cluster similarity measures, cluster validity indices and cluster visualization tools are also offered. In the current version, all the functions are rewritten in the C++ language allowing their application in large-size problems. Moreover, new fuzzy relational clustering algorithms for partitioning qualitative/mixed data are provided together with an improved version of the so-called Gustafson-Kessel algorithm to avoid singularity in the cluster covariance matrices. Finally, it is now possible to automatically select the number of clusters by means of the available fuzzy cluster validity indices.

fclust: An R Package for Fuzzy Clustering / Ferraro, MARIA BRIGIDA; Giordani, Paolo; Serafini, Alessio. - In: THE R JOURNAL. - ISSN 2073-4859. - (2019), pp. 1-18.

fclust: An R Package for Fuzzy Clustering

Maria Brigida Ferraro;Paolo Giordani
;
Alessio Serafini
2019

Abstract

Fuzzy clustering methods discover fuzzy partitions where observations can be softly assigned to more than one cluster. The package fclust is a toolbox for fuzzy clustering in the R programming language. It not only implements the widely used fuzzy k-means (FkM) algorithm, but also many FkM variants. Fuzzy cluster similarity measures, cluster validity indices and cluster visualization tools are also offered. In the current version, all the functions are rewritten in the C++ language allowing their application in large-size problems. Moreover, new fuzzy relational clustering algorithms for partitioning qualitative/mixed data are provided together with an improved version of the so-called Gustafson-Kessel algorithm to avoid singularity in the cluster covariance matrices. Finally, it is now possible to automatically select the number of clusters by means of the available fuzzy cluster validity indices.
2019
software; cluster analysis; fuzzy clustering
01 Pubblicazione su rivista::01a Articolo in rivista
fclust: An R Package for Fuzzy Clustering / Ferraro, MARIA BRIGIDA; Giordani, Paolo; Serafini, Alessio. - In: THE R JOURNAL. - ISSN 2073-4859. - (2019), pp. 1-18.
File allegati a questo prodotto
File Dimensione Formato  
Ferraro_fclust_2019.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 321.49 kB
Formato Adobe PDF
321.49 kB Adobe PDF
Ferraro_fclust_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 259.14 kB
Formato Adobe PDF
259.14 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1304559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 59
social impact