In 1947, N. Herlofson proposed a modification to the 1884 Heinrich Hertz’s Emagram with the goal of getting more precise hand-made weather forecasts providing larger angles between isotherms and adiabats. Since then, the Herlofson’s nomogram has been used every day to visualize the results of about 800 radiosonde balloons that, twice a day, are globally released, sounding the atmosphere and reading pressure, altitude, temperature, dew point, and wind velocity. Relevant weather forecasts use such pieces of information to predict fog, cloud height, rain, thunderstorms, etc. However, despite its diffusion, non-technical people (e.g., private gliding pilots) do not use the Herlofson’s nomogram because they often consider it hard to interpret and confusing. This paper copes with this problem presenting a visualization based environment that presents the Herlofson’s nomogram in an easier to interpret way, allowing the selection of the right level of detail and at the same time inspection of the sounding row data and the plotted diagram. Our visual environment was compared with the classic way of representing the Herlofson’s nomogram in a formal user study, demonstrating the higher efficacy and better comprehensibility of the proposed solution
IVAN: An Interactive Herlofson’s Nomogram Visualizer for Local Weather Forecast / Angelini, Marco; Catarci, Tiziana; Santucci, Giuseppe. - In: COMPUTERS. - ISSN 2073-431X. - 8:3(2019). [10.3390/computers8030053]
IVAN: An Interactive Herlofson’s Nomogram Visualizer for Local Weather Forecast
Angelini, Marco
;Catarci, Tiziana;Santucci, Giuseppe
2019
Abstract
In 1947, N. Herlofson proposed a modification to the 1884 Heinrich Hertz’s Emagram with the goal of getting more precise hand-made weather forecasts providing larger angles between isotherms and adiabats. Since then, the Herlofson’s nomogram has been used every day to visualize the results of about 800 radiosonde balloons that, twice a day, are globally released, sounding the atmosphere and reading pressure, altitude, temperature, dew point, and wind velocity. Relevant weather forecasts use such pieces of information to predict fog, cloud height, rain, thunderstorms, etc. However, despite its diffusion, non-technical people (e.g., private gliding pilots) do not use the Herlofson’s nomogram because they often consider it hard to interpret and confusing. This paper copes with this problem presenting a visualization based environment that presents the Herlofson’s nomogram in an easier to interpret way, allowing the selection of the right level of detail and at the same time inspection of the sounding row data and the plotted diagram. Our visual environment was compared with the classic way of representing the Herlofson’s nomogram in a formal user study, demonstrating the higher efficacy and better comprehensibility of the proposed solutionFile | Dimensione | Formato | |
---|---|---|---|
Angelini_IVAN_2019.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.